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Preface

My purpose of study was to examine the non-rotating
planet assumption for three-dimensional Earth atmospheric
entry. Having worked in the area of hypersonic vehicle
performance analysis for the Air Force Flight Dynamics
Laboratory, I have become familiar with a variety of
atmospheric entry analysis methods. It is obvious that the
Earth’s rotation needs to be accounted for in general entry
studies. However, I was curious to see if trajectory states
existed where the non-rotating planet equations of motion
were equivalent to the rotating planet equations of motion.
This thesis is the result of this curiosity.

I am deeply indebted to my faculty advisor, Capt.
Rodney Bain, for his enthusiastic assistance, his patience,
and for the many hours of instruction on perturbation theory
he generously gave me. I thank Dr. L. E. Miller, formerly
of the Air Force Flight Dynamics Laboratory, for his
assistance, encouragement, and unique outlook. Special
thanks is also owed to Dr. N. X. Vinh for his outstanding
works in analytical flight mechanics that I heavily utilized
in this paper and in the course of my Air Force civilian
career. Finally, gratitude is expressed to my understanding
fiancee, Susan, and my family and friends, who gave me

motivational support throughout my AFIT experience.

Harry Karasopoulos

oric
ii

cory
INSPLCTED

6

A\
v

R N

- . ghiatell b i
A T L L o TN, L R RSN TR

“



W N W N R U W U W W WU WO O U R U U F T R O R TR T RO R W h W W W WL L L5 W e LWL LWL LW L A

Y
-

n\"

AP ESS

»

LN

Pl b

Table of Contents

Page
Preface . . . . . . . . . . . .ii
List of Figures . . . . . . . . . . v
List of Tables . . . . . . . . . . vii
Notation . . . . . . . . . . . . ix
Abstract . . . . . . . . . . . .oxii
I. Introduction . . . . . . . . . 1
IT. Derivation of the Equations of Motion . . . 9
Coordinate Systems . . . . . 9
Kinematic Equations of Motlon . . . . 12
Derivation of the Force Equations
of Motion . . . . . . 25
The Equations of Motlon . . . . . 35
IIT. Approximations and Manipulation
of the Equations of Motion . . . . . . 37
Assumptions and Approximations . . . 39
Changing the Independent Variable . . . 46
The Classical Orbit Variables . . . . 51
IV. Examination of the Rotating Planet Terms . . 60
The Second Small Parameter . . . . . 61
The Rotating Earth Terms . . . . 62
Investigation of Real Solutxons
to the Rotate Terms . . . . . . 65
V. Solutions to the Equations of Motion
Using Matched Asymptotic Expansions . . . . 75
Combining the Small Parameters . . . . 75
The Method of Matched
Asymptotic Expansions . . . . . . 80
Outer Expansions . . . . . . 81
Outer Expansion Solutlons . . . . . 87
Inner Expansions . . . . . . 20
Inner Expansion Solutlons . . . . o8
Matching Zero Order € Solut1ons . . 101
Zero Order € Solutions to the Equat1ons
of Motion . . . . . . . . 111
iii

'J' '.f '.F W, 'a P A AN N U L A e N '.r -_,. T W T Yoy .' A x“ .'-',,’ \-r__- .—,M\.\-: MR GHCHSANAY,

A AN ARy, 5-.-\ -\.‘\-\‘.‘-



-I~i“'.l~0"\' 68,0 ‘0l 6a® §28.02% 62, V2" . e at " c?e" - 0 0 808 a7 a8 > 8. »‘,.-~. OOV EXRMD) 9, % ol o ) cof taf * - - a Al WY ol Ky ‘B

Matching € Order Solutions to the dq/dh

A ‘{-‘\\;‘\'\’\}-' [t o

ﬁ&. Equation of Motion . . 114
‘ € Order Composite Solution to the dq/dh
Equation of Motion . . . 118
Summary . . . . . . . . . 117
i
VI. Trajectory States of Validity for the o
Non-Rotating Equations of Motion . . . . 123 s
G 1
Introduction . . . 123
Non-Existence of Overlapplng Solut1ons o
to the du/dh and dI/dh Rotate Equations . 125 Q@
Graphical Trajectory State fy'e
Examination . . . . 126 4
Solution Est1mat1on Methods . . . . 140 o
)
VII. Conclusions and Recommendations . . . . 151 x
l.q
Conclusions . . . . . . . . 151 k
Recommendations . . . . . . . 1583 A,
O
Appendix A: Some Spherical Trigonometric '
Relationships . . . . . . . 156 he
">
Appendix B: Some Common Expansions . . . . . 160 o
. Appendix C: Derivation of Solutions to Selected W
(g Outer Expansion Differential Equations . 163 )
.“.
Appendix D: Derivation of Solutions to Selected N
Inner Expansion Differential Equations . 175 N,
Appendix E: Example Earth Atmospherlc Entry =
Trajectories . . . . . . . 182 '
v
Appendix F: Supplemental Figures for Section VI . . 187 ;
N
Bibliography . . . . . . . . . . . 202 N,
~
Vita . . . . . . . . . . . . . 204 '
"
i.
b
o
oA
I,
iv

!.(‘.-f-

R S 0y S o ey Ry iy L T Ty T T e v YA e R T A i R R A L S A R L S



® 80" AaY ittt 0at it o fa? 0a® 0.0 gV Tat 0ot 020 Gat GaY et fa’ fav Nt S2* 63° Y Gia? it SAV gat 2a% Ba" fu it got fat g ¥ Bat Gat Ayt ol gad g ) S Bab ¥ fob - N & A

.
gy

List of Figures

Figure Page
Planet Centered Coordinate Systems

Coordinate Systems Revisited . . . . . 10
Heading Angle Definition . . . . . . 11
Vehicle Centered Coordinate Systems . . . 13
Longitude Rotation . . . . . . . . 17
Latitude Rotation . . . . . . . . 17

Heading Angle Rotation . . . . . . . 19

[l ot Wl oy

Flight Path Angle Rotation . . . . . . 19

AR
[
©

‘ " e immaaer

O 0 8N O 0 s W W

. Bank Angle Rotation . . . . . . . 21 |
;3 10. Earth Atmosphere Model Comparisons . . . . 44 .
L
- 11. The Osculating and Equatorial Planes . . . 53
v !; 12. The Osculating Plane and the Orbital Elements . 54
v 13. States of Validity for the Non-Rotating
§ Earth, du/dh Equation of Motion

(u= .210 , h = .0077) . . . . . . . 129
. 14. Surface of Trajectory State Solutions
> of Validity for the Non-Rotating Earth
"’ du/dh Equation of Motion
A (u= .80, h = .0129) . . . . . . . 132
; 15. Surface of Trajectory State Solutions
. of Validity for the Non-Rotating Earth
A du/dh Equation of Motion :
3 (u = .020, h = .0052) . . . . . . . 133
: 16. States of Validity for the Non-Rotating
e Earth, dI/dh Equation of Motion
: (u= .210, h = .0077) . . . . . . . 135
'-
/- 17. Surface of Trajectory State Solutions |
¢ of Validity for the Non-Rotating Earth )
A dI/dh Equation of Motion i
& (u= .80, h = .0129) . . . . . . . 137 l
d v 1
S
‘.
o
N v '
. ]
\
iy '.{\"-'-'\I‘v'. .’-. RN AN 'I'.’."I'I""f""'l' PRI AT PR " -'_--._-._-'_‘__.-'r».-'_:




S i

-

Figure

18.

19.

20.

21.

22.

23.

24.

25.

Al.

F1.

F2.

F3.

VRISV VO R A

Surface of Trajectory State Solutions
of Validity for the Non-Rotating Earth
dI/dh Equation of Motion

(u = .300 , h = .0084)

Surface of Trajectory State Solutions
of Validity for the Non-Rotating Earth
dI/dh Equation of Motion

(u = .020 , h = .0052)

Estimation of Trajectory State Solutions
of Validity for the Non-Rotating Earth
du/dh Equation of Motion

(u = .300 , h = .0084)

Estimation of Trajectory State Solutions
of Validity for the Non-Rotating Earth
dI/dh Equation of Motion

(u = .860 , h = .0129)

Estimation of Trajectory State Solutions
of Validity for the Non-Rotating Earth
dI/dh Equation of Motion

(u = .300 , h = .0084)

Estimation of Trajectory State Solutions
of Validity for the Non-Rotating Earth
dI/dh Equation of Motion

(u = .020 , h = .0052)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u = .210 , h = .0077)

Estimation of Trajectory State Solutions
of Validity for the Non-Rotating Earth
d1/dh Equation of Motion

(u = .020 , h = .0052)

Reference Spherical Triangle

States of Validity for the Non-Rotating
Earth, du/dh Equation of Motion
(u = .210 , h = .0096)

States of Validity for the Non-Rotating
Earth, du/dh Equation of Motion
(u = .210 , h = .0024)

States of Validity for the Non-Rotating

Earth, du/dh Equation of Motion
(u= .860 , h = .0130)

vi

AL O G R caw e X A -
T N S N i e N g i i Y A

Page

138

139

141

145

146

147

149

150

157

188

189

190

TR

“

|
|

S o =

Af ettt ad AR RLR]D bt e xad)  ilaPelbaleledalmh SRl Fod ) b

Atk

L)

i
1

AR
\.H_\‘\\



s

Figure

F4.

F5.

F6.

F7.

F8.

F9.

F10.

F11.

F12.

F13.

Fl14.

States of Validity for the Non-Rotating
Earth, du/dh Equation of Motion
(u = .010 , h = .0047)

States of Validity for the Non-Rotating
Earth, du/dh Equation of Motion
(u = .210 , h = .0077)

States of Validity for the Non-Rotating
Earth, du/dh Equation of Motion
(u = .210 , h = .0077)

States of Validity for the Non-Rotating
Earth, du/dh Equation of Motion
(u = .210 , h = .0077)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u = .210 , h = .0096)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u = .210 , h = .0024)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u = .860 , h = .0160)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u = .010 , h = .0047)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u=.210 , h = .0077)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u = .210 , h = .0077)

States of Validity for the Non-Rotating
Earth, dI/dh Equation of Motion
(u = .210 , h = .0077)

vii

1



List of Tables

e
Table
I Example Trajectory #1
I1 Example Trajectory #2
I1T Example Trajectory #2
o

e %y} ..‘ -"-%n o »_‘l.".".‘r:'l":';

viii

A R . mm
{Q
£

et R A A AR A T R n T S TS A T T a e b Sptp
A e N e L s

Page
154

155

155




e e R W A N, T T o T Y o W Y W W W VW VAR W VOWP ATV P TN S AT E ™ ™" ™™ W 1

Notation

Roman Letter Symbols

d ESLLHES D g
&

o
»

5.:
a - Acceleration (ft/sz)
B - Ballistic coefficient
CD - Drag coefficient !
CL - Lift coefficient
D - Drag (1b)
g - Acceleration of gravity (ft/sz)
g, - Gravitationalgacceleration at the planet’s

surface (ft/s )

h - Non-dimensional altitude
I - Orbital inclination (deg, rad)
o L - Lift (1b)
N L/D - Lift-to-drag ratio
M - Mach number
m - Vehicle mass (lbm)
q - Cosine of the flight path angle |
r - Radius from center of planet (ft)
r., - Planetary radius (ft) .
]
S - Aerodynamic reference area (ftz) 3
t - Time (s) ;
u - Speed ratio, a modified Chapman variable i
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v - Velocity (ft/sQ) ;
y - Altitude (ft) *
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Inverse atmospheric scale height (1/ft)
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Small parameter

Small parameter
Small parameter
Longitude (deg, rad)

Planet graviational parameter (fts/sz)

Magnified non-dimensional altitude
Density (lbm/fts)
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‘é Abstract

e

3 The assumption of a non-rotating planet, common in most :
‘E analytical entry trajectory analyses, has been shown to |
¥ produce significant errors in some solutions for the lifting '
- atmospheric entry of Earth. This thesis presents an

§ investigation of the validity of the non-rotating planet ;
: assumption for general three-dimensional Earth atmospheric :
o entry.

g In this effort, the three-dimensional equations of

J - motion for lifting atmospheric entry are expanded to include

2 °. a rotating planet model. A strictly exponential atmosphere, |
3 rotating at the same rate as the planet, is assumed with

‘; density as a function of radial distance from the planet’s

: surface. Solutions are developed for the non-rotating Earth

; equations of motion and for one of the rotating Earth

FA [
ﬁ equations of motion using the method of matched asymptotic ]
. expansions.

; It is shown that the non-rotating Earth assumption ‘
,E produces incorrect entry trajectory results for entry :
Qé orbital inclination angles between 0.5 and 75.0 degrees and

3 vehicle speeds ranging from circular orbital velocities to

‘i low supersonic speeds. However, a variety of realistic )
i 'ﬁ& trajectory states exist where some of the non-rotating Earth
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equations of motion are valid. Three of the non-rotating
equations of motion are found to be valid for the same entry
trajectory states. Other, independent trajectory states
exist where a fourth non-rotating Earth equation of motion
is valid. A fifth equation of motion is never valid for the
ranges of orbital inclination angle and speeds investigated. !
Trends in the results of the trajectory states of validity

are discussed and methods to estimate some of these states ,

are presented.
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PR R X

INVESTIGATION OF THE VALIDITY OF THE
NON-ROTATING PLANET ASSUMPTION FOR
THREE-DIMENSIONAL EARTH ATMOSPHERIC ENTRY

I. Introduction

Analytical studies often have the advantage of
displaying valuable solution trends, giving more insight to
the problem and its solutions than corresponding numerical
work. Simple and accurate analytical methods to find
solutions to the equations of motion for high speed flight
vehicles supplement more complex and unwieldy numerical
methods. In past analytical work on lifting atmospheric
entry, the limiting assumptions of planar entry and a non-
rotating planet were common. The equations of motion for
planar atmospheric entry of a non-rotating planet are highly
nonlinear; adding rotating planet and non-planar effects to
the equations of motion make them even more difficult to
solve analytically. Hence, the current literature has no
investigations which analytically solves the equations of
motion for three-dimensional, lifting atmospheric entry of a

rotating planet.

The Non-Rotating Planet Assumption

Although common in most analytical entry trajectory
analyses, the assumption of a non-rotating planet model can

produce significant errors in trajectory results. Since

- T IO I R T e T e L Il R I It Il S Y T LI e L IR A R Al
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most planets have a significant rotation rate, the rotating

! 2ol planet assumption will give more accurate entry vehicle

N performance results, especially for lifting vehicle range .
S and time of flight calculations. Inherent in the concept of

'f a rotating planet for atmospheric entry is the assumption

" that the planet’s atmosphere rotates with the planet at a

, constant rate. This assumption is more accurate than the a
s? non-rotating planet/atmosphere assumption but is still not

& ideal. The atmosphere of a rotating planet can be viewed as

§’ a boundary layer with rotation rates which change with "
r altitude. Near the planet’s surface the atmosphere rotates '
- at about the same rate as the planet. As altitude

.

,: increases, the atmosphere rotates with a decreasing rate, E
b .
a . and at high altitudes this rate is near zero. Hence, the :
! ® true effect of a rotating atmosphere is therefore bounded on

E one end by the non-rotating planet solutions and on the X
5 other end by the rotating planet solutions. In this study .
R is is assumed that the rotating planet solutions are ideally

: valid. ;
:: The maximum effect of the rotating atmosphere (Chapman,

- 1959:5) on a flight vehicle is easily calculated for a 2
ég spherical planet. This maximum occurs at the equator for %
< minimum altitude and is given by the ratio of the planet’s

! angular velocity to the circular orbital velocity at the :
; planet’s surface. The planet’s rotational velocity on the E
e, equator is given by E
o

.

: 2 '
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Vr = wr_

where w is the planet’s rotation rate and r, is the radius

of the planet. The circular orbital velocity at the surface

of the planet is

Vo = g,r )"

where g_ is the gravitational acceleration at the surface of

the planet. The ratio is given by

This ratio gives an indication of the possible error
introduced to velocity calculations for a non-rotating
planet model. For Earth, this ratio is approximately 0.06
For Mars, Jupiter, Saturn, and Venus, this ratio is
approximately 0.07, 0.30, 0.40, and 0.0, respectively (Vinh
and others, 1980:3). Hence, for near-equatorial atmospheric
entry, the maximum velocity error is negligible for Venus,
significant for Earth and Mars, and very large for Jupiter
and Saturn. The velocity error associated with the non-
rotating planet assumption causes an even larger error in
the calculation of aerodynamic forces. Since lift and drag
are proportional to the square of velocity (as seen in
Section II), the error introduced to the aerodynamic force
calculations can be a maximum of about 0.14, 0.12, 0.60, and

0.80, for Mars, Earth, Jupiter, and Saturn, respectively.
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A recent study of AOTV (Aero-assisted Orbital Transfer

Vehicles) trajectories about Earth investigated possible

s

trajectory simulation error due to the non-rotating planet

L L7

assumption. In this study it was found that the non-

rotating planet model caused velocity errors which gave

dynamic pressure differences ranging up to 10 - 14%

These differences may cause underprediction of the final

! altitude and overprediction of the attainable orbital

I inclination change in a non-rotating Earth analysis. It was

concluded that rotating Earth effects must be included for

realistic AOTV trajectory simulation (Ikawa, 1986:1,9).
Another recent study (Miller, 1986:14) noted significant

errors in values of range and time of flight for equilibrium

SOArNr

glide entry trajectories when the Earth’s rotation was

.4
.0

rotating and non-rotating cases were found to be

CQ vy

significant, especially for trajectories beginning at speeds

greater than 15,000 ft/s.

Vinh (Vinh and others, 1980:3) argues that inclusion of

. x
RO A

L Vg

a rotating atmosphere into an analytical entry study would
cause unwarranted overcomplication to the problem, possibly

overshadowing the advantages of an analytical versus

Pl e ol el W o

numerical analysis. However, for many atmospheric entry

trajectories, such as multiple pass aerobraking, synergistic

2o el

orbital plane change, and general high L/D vehicle

NN

trajectories with shallow entry flight paths, trends in the

solutions caused by the rotating planet and its atmosphere

NN
<A

AL 4

“x

neglected. Differences in trajectory results between the ]
\
i

.
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may be important. For these types of trajectories, the
v error in the calculation of the aerodynamic forces is more :
prominent due to the relatively large flight times within

the sensible atmosphere.

o = = &R 2|

Problem
Because of their complexity, the equations of motion for

three-dimensional, lifting atmospheric entry of a rotating

o < S A LN

planet have not been analytically sclved. However, the
assumption of a non-rotating planet, common in most

analytical entry analyses, has been shown to produce

(o B & 55"y

significant errors in some solutions for the lifting
atmospheric entry of Earth. An investigation of the general

validity of the non-rotating planet assumption for three-

AR LI

-~ dimensional Earth atmospheric entry is needed. 1In addition,
the existence of trajectory states where the rotating planet

terms in the equations of motion are negligible should be

il ol L s

investigated. This would indicate the existence of
trajectory states where existing solutions to the non-
rotating equations of motion are valid for Earth lifting ;

atmospheric entry. .

Scope
In this effort, the three-dimensional exact equations of
motion for lifting atmospheric entry are expanded to include

a rotating planet model. The rotating planet terms in the \
equations of motion for Earth atmospheric entry are

examined. Solutions are developed for the non-rotating
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:5 equations of motion and for one of the rotating Earth

)} i&' equations of motion. This was accomplished by treating

A atmospheric entry as a boundary layer problem, and applying .
:‘ method of directly matched asymptotic expansions. A variety

} of realistic Earth entry trajectory states are shown to

Y exist where some of the non-rotating equations of motion are

.E valid for a rotating Earth. This validity is coordinate

. dependent since sigularities exist in the equations of

‘ motion. Entry trajectory state examination is limited to

§ orbital inclination angles between 0.5 and 75.0 degrees,

2‘ where most Earth atmospheric entry occurs, and vehicle

= speeds ranging from circular orbital velocity to low

‘3 supersonic speeds where terminal maneuvers, such as landing !
jj approaches, are usually initiated.

« ‘:

f; Assumptions

o The planet is modelled in this analysis by a sphere

3' having a central gravitational force field obeying the J
) inverse square law. A strictly exponential atmosphere,

§ rotating at the same rate as the planet, is assumed with

; density as a function of radial distance from the planet’s

< surface. In this effort, the only forces acting on the

E lifting vehicle are assumed to be gravity, lift, and drag; 1
': magnetic, solar wind, and other forces are considered d
:: negligible. The lifting entry vehicle is modelled as a

'{ point mass in a three degrees-of-freedom analysis. Constant

;: lift-to-drag ratio is assumed along the trajectory and a 1
. : A

6
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ballistic coefficient is specified for each flight

vehicle/atmosphere under study. Angle of attack was not
explicitly modelled. More detailed discussion of the

approximations and assumptions will be presented in Section

III.

Approach

In Section II, the equations of motion for three-
dimensional lifting entry for a spherical, rotating planet
are derived. In Section III these equations of motion are
transformed into a form more convenient to examine and
solve. The equations are also made non-dimensional and a
coordinate transformation is undertaken. In Section IV the
rotating planet terms in each of the five equations of
motion are examined. These terms then are set equal to zero
and checked for the existence of real solutions. It is
shown that three of the equations of motion have identical
solutions for these rotating terms. It is also shown that
real solutions do not exist for the rotating terms in one of
the equations of motion. The solution to the equation of
motion containing these rotating terms is developed in
Section V along with the solutions to the non-rotating Earth
equations of motion. These solutions are derived from the
rotating Earth equations of motion using the method of
matched asymptotic expansions. In Section VI, the solutions
to the rotating term equations in the other four equations

of motion are examined in more detail. Trajectory states
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are presented where some of the non-rotating Earth equations p

, . ’

NS : 3
) o of motion are independently valid for a rotating Earth. .

Methods are given to estimate solutions where four of the
non-rotating equations of motion are valid for rotating
Earth entry. Conclusions and recommendations for further

study are presented in Section VII.
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II. Derivation of the Equations of Motion ]

In this section, the equations of motion are derived for '

three-dimensional lifting entry of a rotating planet. A .
spherical, rotating planet model is employed and it is

assumed that the atmosphere rotates at the same rate as the
planet with rotation rate, w. The lifting entry vehicle is
modelled as a point mass in a three degrees-of-freedom
analysis. Gravity, lift, and drag are assumed to be the
only forces acting on the vehicle; magnetic, solar wind, and
other forces are assumed to be negligable. Further
discussion of assumptions and approximations is presented in

Section IIT.

Coordinate Systems

used in this analysis. The planet’s inertial reference

- -~

frame has coordinates X, Y, and Z, with unit vectors I, J,

and K, respectively. The X and Y axes lie in the planet’s

equatorial plane and the planet rotates about the Z axis.

Figure 1 defines the planet centered coordinate systems I

»
a The rotating planet-fixed coordinate system has axes Xo, Yo,
- . .
;’ and Zo’ with unit vectors Io’ Jo’ and Ko’ respectively.
) Another view of the planet centered coordinate systems is
N illustrated in Figure 2. a is a unit vector in the XY
plane, pointing radially away from the planet. 6 is defined
5 >
\I
N g
9
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P as the longitude and is measured from the X  axis which

N rotates about the K, direction with rate w. ¢ is latitude
X and is measured positive from the equator to the pole in the

io direction. <9 is the flight path angle and is measured

"positive up" from the local horizontal to the velocity

vector. The heading angle, ¢, is measured from a constant
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Figure 3. Heading Angle Definition

latitude line to the projection of the velocity vector onto
the sphere, positive towards the Ro direction (Figure 3).
The vehicle has mass, m, and is at a radius, r from

the center of the planet. Figure 4 presents the vehicle
centered coordinate system.

Kinematic Equations of Motion

In order to develop the equations of motion, we first

look at the velocity and acceleration equations for rotating

12
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\ systems. The velocity of the vehicle with respect to the

<,

s,
o <o inertial frame, X, Y, Z, is defined as the sum of the
Q velocity of the vehicle with respect to the rotating frame
~ and the cross product of the angular velocity of the )
4
L rotating frame and the radius vector.
o -+ -+
o V’~~~ = %% .~~~ = %% + ﬁ X r
! I1JK I1JK ijk ijk
X
= Vv + @ xT (2.10)
1jk ijk
where T is the radius vector, extending from the planet’s f
center to the flight vehicle, ¥ is the velocity vector, and
% is the angular velocity of the rotating frame. .
The inertial acceleration, a, is defined as the :
- J
e derivative of the inertial velocity. ;
9+ 2+ -+
.. - LE_ o dE g, dE L d, g
IJXK  dt? [1JK  dt? |1k 13k 13k
+ d-’ +
+(ﬁxﬁ)xr +ﬁxﬁ +ﬁX[ﬁXr ]
ijk ijk ijk
This can be simplified to the following
-
I N L T
1JK ijk ijk ijk
+ {1 x [ﬁ X T ] (2.12)
13k '
Y
LWAS

LA KA
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where {

a|~~~ is the acceleration of the vehicle with respect

IJK

to the inertial planet centered coordinate

" system.

P+

is the acceleration of the vehicle with respect .

v

ad

=
.

N to the radius vector.

iy is the angular velocity of the rotating frame. For

a point mass vehicle in flight over a rotating

K A A Sy~

planet, 4 is equal to a constant, the planet’s

. g
rotation rate, w

- of x r is the Coriolis acceleration.

ijk

ﬁX[ﬁx¥

R} is the Centripetal or Transport

<+
1 .
J acceleration.

To apply Eq (2.12) in the derivation of the equations of
motion, transformations between the various coordinate
systems are required. The coordinate transformation from

the inertial system, XYZ, to the vehicle centered system,

xyz, is not difficult but is prone to algebraic error
because of the many intermediate steps and variables
. involved. For ease in derivation, this transformation of

> coordinate systems is divided into a number of simple angle

rotations.
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1st Rotation, Inertial to Rotating. The first rotation

is the planet rotation about the Z axis. The rotation angle
at time t is wt. From Figure 1 it can be seen that the

following expressions apply:

Io Icoswt + Jsinwt

~Isinwt + Jcoswt

€ !
I

K

o]
I

In matrix form

Io coswt sinwt 0] I
Jo = -sinwt coswt o g (2.1)
Ko 0 0 1 K

and
I coswt -sinwt O zo
J = sinwt coswt O Jo (2.2)
K 0 0 1 Ko

2nd Rotation, Longitude. The second rotation (Figure 5)

is a longitude angle rotation about the Z axis:

-~ ~
g

a = Iocose + Josine and ] = -Iosine + Jocose

3rd Rotation, Latitude. The third rotation is a

latitude angle rotation about the y axis. From Figure 6

-~

i = acos¢ + iosin¢ and k = -asing + K_ cos¢

The results from the longitude and latitude rotations are

16
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Figure 8. Latitude Rotation
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oL, N
2 e combined and presented below:
’ ';::.I‘
* . o z
1 cos¢pcosf cos¢sinfd sing I,
A 3 = -sin@ cosf o) Jo (2.3)
‘ - . - -
N k -cosfsing -sinfsin¢g cos¢ K,
"
- and
3 -
‘ I, cosgpcosf -sinf singcosé i
» Jo| = |-sinfBcos¢ cosf singsiné j (2.4)
o .
s K, -sing o cos¢ k
e At this point enough information is known to make
W
W
) coordinate transformations between the XYZ inertial frame
" and the rotating xyz vehicle point mass frame. However, the
;Q transformation between the xyz and the x_y z, frames is
by
}
g required. Figure 4 presented the vehicle centered
too coordinate systems that are used in the equations of motion.
[
* b is a unit vector that is used to make the intermediate
coordinate transformations easier to follow.
4th Rotation, Heading Angle. The fourth rotation is a
heading angle rotation about the x axis. From Figure 7
* - 4 .
b = jcosy + ksing and Ro = -)}siny + Rcosw
5th Rotation, Flight Path Angle. The fifth rotation is
a flight path angle rotation about the z  axis. It can be
seen from Figure 8 that

18
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o - 4 _ . * _ v .
e 1, = 1cosqy 5s1n7 and Jo= 1sinq + bcosy

The results from the heading angle and flight path angle

rotations are combined and presented below:

1, cosq -sinqcosy -sinqpsing 1
30 = sinqy cosycosy cosysingy j (2.5)
Ro 0 -siny cosy k

1 cos¢cosf -siny 0 i,
3 = sinycosy cosycosy siny 30 (2.6)
k sinysiny -cosysiny cosy k,

‘o Combining all five rotations gives the relations for a

complete coordinate transformation between the XoY¥020 and

XYZ systems.

[

io cosq -sinqcosy -sinysiny [ cosgpcosf cos¢gsing sing
30 = |sinqy cosqcosy cosysing|| -siné cosf o
Ro i 0 -sing cosy L—cosesin¢ -sinfsing cosg

e L

o

coswt sinwt

| -sinwt coswt o |- 2.7
{ o o)

—
it

and
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‘o
: I coswt -sinwt Of| cos¢gcosf -sinf singcosh
J | = |sinwt coswt O||-sinfcosp cosf singsind|-
K 0 0 1 -sing o cos¢
< ( cosgcosd -sinqy 0 i,
| sinycosy  cosycosy siny || J (2.8)
| sinysing -cosqsing cosy k,

The only other coordinate transformation relation that
requires consideration at this point is the rotation to
allow for banked flight. Defining o as bank angle in Figure
9 gives the following relation:

c = i coso + ﬁoaino (2.9)
o
A
21
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bl

= where ¢ is a unit vector in the direction of the 1ift force.

>
o8 N

From Figure 6 it can be seen that aerodynamic lift acts
by
‘H in the c direction, drag acts in the -] direction and the
)
vehicle’s velocity vector points in the +] direction.

o Hence, 1lift is given by
,
L = L2 = (Leoso)i+ (Lsino)k, (2.13)
K From Egqs (2.9) and (2.5)
™ L= Lcosa[00571 - sinycosy] - sinqsin¢ﬁ]
. + Lsina[-sin¢3 + cos¢R]
; L= L(cosocosy)i - L(cososinycosy + sinosing) ]

'Y
[ + L(sinocosy - cososinqsing)k (2.14)
o
,3 The drag components are found in terms of the vehicle
& centered unit vectors by application of Eq (2.6):
N D = —D30 = -D(sinqy)i - D(cos7cos¢)3 -~ D(cosysing)k (2.15)
4 The vehicle’s local or relative velocity with respect to its
[ own reference frame is
ﬁ \% = V(siny)i + V(cosqcos¢)3 + V(cosvysing)k (2.16)
X ijk
- The planet’s rotation needs to be accounted for to
2
- obtain the vehicle’s inertial velocity from Eqn (2.16). A
¢
~ velocity component due to the planet’s rotation is added to
N .
N
.
N
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the vehicle’s local velocity to form the inertial vehicle
velocity. The planet’s rotation velocity component is a
function of latitude; at the equator this velocity component

has its maximum value and at the poles it is zero.

Vehicle’s Inertial Velocity = V‘~~-
IJK

Velocity component due to planet rotation = v

Vehicle’s local velocity = v

ijk

v (2.17)
13k T

V|“~ =V
IJK

Vo=V j = wrcos¢] (2.18)

Combining Egs (2.16), (2.17), and (2.18) gives an expression
for the inertial velocity of the flight vehicle.

V-2 = V(sinq)i + V(cosqcosy + wrcosg¢)]
IJK

+ V(cosqysing)k (2.19)

Another expression for inertial velocity can be derived
from Eq (2.10) and compared to Eq (2.19) to produce three of

the equations of motion.

v‘---= dr _ dr

T + 0 x T

ijk ijk

13X 9t 1

In this equation i is the vector sum of two rotation

rates between three coordinate systems, the XYZ, XOYbZO, and




xyz systems. Therefore, 1l is the sum of the angular

velocity of the rotating planet frame about the inertial
frame and the angular velocity of the vehicle centered
reference frame about the rotating planet frame. This can

be expressed by

3 -9 . )
XYZ—+X6YbZO X0Y°Z0~+xyz

From Figure 1

d-0+8+3 = [w + %%]Ro - %%3

and with Eqn (2.4)

d T d¢- d
g = [w + a%]51n¢1 -3t [w + g%]cos¢ﬁ (2.20)
.
Since r|_ = ri
ijk
dI' _ d_r': ﬁ _ g:-.-
dt|sap = dtt T TdE|g.p T dt? (2.21)
1) 1)

a d
= r[w + %%]cos¢1 + a%ﬁ

X 13k
’,

fl

-

<.

. Hence, the second equation for inertial velocity in terms of
-

" the vehicle centered reference frame coordinates is

-3

&

i‘ Y

X ¥|... =913 | rcosg (w + éQ)J + r39¢ (2.22)
1% t dt dt

"l

S
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‘
w
v
y
o4
Y -~ Three kinematic equations of motion are derived by
N
AN
equating the two inertial velocity expressions, Eqgqs (2.19)
K- and (2.22), and comparing like terms.
' d -+
v dr« déo, - d _ . 3
FrE rcos¢(w + az)J + ra%ﬁ = V(sinq)i +
| + V(cosqycosy + wrcos¢g)] + V(cosqsing)k
- Kinematic Equations of Motion.
o i terms: dr _ Vsinqy (2.23)
' ’ dt .
» - . dé _ Vcosqcosy
" ] terms: it - rcosé (2.24)
~ .
N k terms: %% = Y£9§¥§12ﬂ (2.25)
~
M . Derivation of the Force Equations of Motion
®
: ) To derive additional equations of motion, the inertial
- acceleration is calculated. From Eq (2.12)
] 2l o3| x| hxz| 4 [ ‘3 ]
N 1JK 17k 13k 17k 17k
{ Each of the four terms in the above equation is derived
o separably for clarity.
-'\
- *2
o 1st Acceleration Term. a = QE;
- 13k de? |13k
v From Eqs (2.21) and (2.23)
%
- + dre . .
- - U vet S Vsinya
» ijk
O
A
;.
) 25
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: _3&, Therefore a 13k = [sin7g¥ + Vcos7%%]i (2.26)
s
[s +
N 2nd Acceleration Term. off x ¥

. ijk

. From Egqs (2.20)

d = [w + %%]sin¢i - gt3 + [w + %%]cos¢ﬁ

i.(.;. LA I

and from above

f\f\f\f\'f‘“f"f

N

M

. .

, b dI“~ . <

) T = 371 = Vsinqi

e i:]:r( dt

': Taking twice the value of the cross product of these two
o equations gives the second inertial acceleration term.

l-» ... .

% o2ff x ¥ crp [2Vsin7cos¢(w + %% ]3 + [2Vsin7%%]k (2.27)
[~ 1]

¢

‘

R 3rd Acceleration Term. d x T

. i3k

o Taking the time derivative of Eq (2.20) gives

. \ do dg. _ d26 . .. 6] . .di _ d’¢.
: g = [w + EZ]C°S¢dt1 + 2s1n¢1 + [w + az]s1n¢3€ - 5

.. dt dt

"'

) de dk

., - [w + dt]51 ¢H%R + ;Z;cos¢ﬁ + [w + HE]C°s¢dt

"

# Rewritten

5 s
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P s
)
L4

: ; 2 2
. « d d d ¢
D, ; g = [[w + dz]cos¢a% + 3;%31n¢]1 - ;ZgJ

'd

+ Sl-:‘>—22cos¢) - [w + Eg]s1n¢—g (2.28)

dt

-

P ey

Therefore, the third term of Eq (2.12) is

g xr

AFLILS L AN

2 2
¢ = [rizgcos¢ - [w + gt]r51n¢—QJJ + r;zgﬁ (2.29)

*
1)

4th Acceleration Term ﬁ X [ﬁ X T "R]
1)

. . )
-
N Taking the cross product of Eqs (2.20) and (2.21) gives

A 3 x 2

= r[w + %%]cos¢} + r%%ﬁ

‘ 13k
-F
N .' Taking another cross product produces the fourth inertial
;: acceleration term.
.
v, + A d’¢|s
" g x (ﬁ X r ) = - r[w + 3{] cos“¢ + r > |2
ijk dt
»'
2 d do1 . |- de1? .
$ - [ra%[w + 3€]51n¢}3 + [r[w + az] singcos¢ k
.

:; Total Inertial Acceleration. Combining Eqs (2.26), 5
- (2.27), (2.29), and (2.30) gives the total inertial ]
b acceleration in terms of the vehicle centered direction unit F
:‘ -~
- vectors. )
> 9
:‘. L
. 2 2 y
g al--- = [sinq%% + Vcos7%% - r[w + %%] cos2¢ - ré—f]i ;
- o 1JK dt )
e o

. 1
:' “
/ H
'’ q
< 27 :
-

Y
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O P e M AT TN A TN p e A S e Y e e e e e e 1 SN AN N S R




...... Ly W g W W W e W T T VW ¥ e T e R T W W T aTw T e T AT E T E T T, WYRT YRV Yy " _ R

r) - - ;
o
K
y [ 2
: ;fﬁ + 2V51n7cos¢[w + QQ] + rg—gcos¢ - 2[w + a%]rs1n¢a%l
‘< § dt?
3 + Fr[ + ‘-’ﬁ]?si osp + 98 . 2vein,delg (2.31)
. HLSRD npcosg de? Tat :
This equation can be simplified by substitution of the
s three kinematic equations of motion that were previously
derived, Eqs (2.23), (2.24), and (2.25). Because of the
: size of this new equation, each direction component of the
f inertial acceleration, Eq (2.31), is examined separably
Q {
& below. :
. ith Inertial Acceleration Component. The ith term of Eq
»
; (2.31) is
' L)
y . dv dy 612 . da2¢
- '; ith = sinygy + Vcos'ydt - r[w + Ef] cos" ¢ - rdt2 3
- :
. Substituting in for 32 and $% with Eqs (2.24) and (2.25) R
ith = s1n73t + Vcosq%% - rw2cos2¢ - 2wr[YE%%g§%§ﬁ]cos2¢ <
o™l
. V2 cos gcosj] V2coszqsin2¢}
- rcos ¢ -r
~ 2 2
r“cos’ ¢ by
f' This can be simplified to :
f -
’ dv dy V? R
ith = sinygg + Vcosqa% - ;'c052¢ - 2wVcosycosycosg ‘
v 2 2
A - w'rcos’ ¢ (2.32)
o o »
'. Q’!“\" "
n (]
' [
9 28 3

R R O RS
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3

: o jth Inertial Acceleration Component. The jth term of Eq
] (2.31) is

. . de d’e dol . . .d¢

b Jth = |2Vsinqycos¢|w + | + r—_cos¢p - 2|w + F.|rsing

4 [ dt] dt? [ dt] dt

Substituting in for %% and %% produces

Pa N A A

jth

2wVsinqcos¢ + 2Vsinqcos¢

Vcosgcosg]

rcos¢

-

Vcosqycosy| _ 2wrsin¢[VcosgsinQ]

rcos¢g—
dt rcos¢ r

+

; ~ 2rsing Vcosysing| | Vcosycosy
v T rcos¢
b
L . This equation simplifies to the following expression:
]
3 :
: jth = %E YE%%%g%EiJrcos¢ + 2wVsinqcos¢ + 2¥'sin7cos¢cos¢
.
- 2wVsingcosysiny - 2Y2'tan¢cos2 singcosy
§ 7 T 7
5 The first term of this equation is
R
d |Vcosqycosy dv . d
? 3;[ rcosg Jrcos¢ = [cosqcos¢a€ - V81n7cos¢a%
~ . d Vcosqycosy dr . .d
L - Vcos751n¢a%] - ) 2 [cos¢a€ - rs1n¢a%
s r‘cos’ ¢
e
W Simplifying and substituting in Egqs (2.23) and (2.25) gives
’
‘ d [Vcosqycosy _ dv . dy . ody
- dt rcosg ]rcos¢ = cosycosyiy Vslnqcos¢dt Vcos7sxn¢dt
: 2
*
‘
ﬁ
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2 2
LN . =9 v. 2 3
. -7 sinycosycosy + *cos Ycosysinytang

Therefore, the entire jth term of Eq (2.31) is

o
ct
o

]

cosqcos¢%¥ - Vsinqcos¢%% - Vcosqsinﬁg%

+

2wV[sin7cos¢ - sin¢cos7sin¢]

+

2
!°cos cosylsiny - cosysinytan (2.33)
r Jcosy 7 7singtang

kth Inertial Acceleration Component. The kth term of Eq

(2.31) is

2 2
kth = ri;? + 2Vsin7%% + r[w + %%] singcos¢

The first term in this kth component requires some
manipulation. Differentiating Eq (2.25) and multiplying by

r gives

2
Ao _ .d
dt? dt

VCQEQEiEil = cosqsin¢%¥ - Vsinqsin¢%%

r

2
+ Vcosqcos¢%% - ¥'sin7cos7sin¢ (2.34)

Substituting Eqs (2.34), (2.23), and (2.24) into the kth

term produces

2

2 2 2 .
kth = 2¥°sin7cosqsin¢ + wzrsin¢cos¢ + V" cos” ycos’ ¢sing

rcosg

+ 2wVcosycosysing + cosysin dv _ Vsinqgsin dy
7 7 ¢dt '7 dt

\]

}\
‘s

v
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2
+ Vcos7cos¢g% - ¥'sin7cosqsin¢

s
l.'

This equation can be simplified to the following expression:

V2 2 dv
;'cosq(cosqcos ytang + sinqsing) + cosysiny g

kth

l

Vsinqsin¢%% + Vcos7cos¢%% + 2wVcosycosysing

w’ rsingcos¢ (2.35)

+

Total Inertial Acceleration. Adding together the

ith, jth, and kth acceleration terms given by Egs (2.32),
(2.33), and (2.35) gives an expression for the total

inertial acceleration on the vehicle.

2
Alean = {Sinq%% + Vcosq%% - 2wVcosycosycos¢d - ¥'c0527
IJK

- w2r0052¢]i + [cos7cos¢%¥ - Vsinqcos¢%% - Vcos7sin¢%%

+

2Vw (cos¢siny - singcosysing)

2
¥'cosqcos¢(sin1 - singcosqytang) |]

+

cosqsin¢%¥ + Vcos7cos¢%% (2.36)

+

Vsinqsin¢%% + 2wVsingcosycosy

2
w rsingcosg + ¥'cosq(sinqsin¢ + cos’ ytangcosy) [k

+

1

Lalitals X KLY
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Another equation for inertial acceleration can be
' derived by examining the forces on the vehicle. It is
assumed that the only forces acting on the vehicle are

D gravity and aerodynamic lift and drag.

e = X (2.37)
113k

Therefore

dv

ke

-+
and a

- = 2T+ B) + & (2.38)

where the gravitational force, g, is a function of r and

UL

acts in the negative radial direction.

PR ST i bl el

g = -g(r)i (2.39)

Lift and drag are given by Egs (2.14) and (2.15):

2 L

(Lcosgcosq)1 - (Lcososinycosy + Lsinosing)]

- (Lcososinysinyg - Lsinocosy)k

~ ) (-Dsinq)i - (Dcosqycosy)] - (Dcosysing)k

~ With substitution, a second equation is found for the total

inertial acceleration of the vehicle:

] L D_. *
- al~--~ pcosocosy - —siny - g|1

IJK

e d

[%cosasin7cos¢ + %sinasin¢ + gcos7cos¢]3

[%cosasin7sin¢ - Esinacosf + gcosqsin¢]ﬁ (2.40)

« v, .
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By setting the two different equations for inertial
acceleration equal and comparing like terms, three
additional equations of motion can be derived. Equating Eqgs

(2.40) and (2.35) produces the following expressions:

* . -
1 Direction Term.

2
sinq%% + Vcos7%% - 2wVcosqcosycos¢ - ¥'coszq - wzrcosz¢

= é(Lcosacosq - Dsiny) - g (2.41)

Direction Term.

Rt d

cos7g% - Vsin7%% - Vcosqtan¢%%

2

2V (cos¢siny-singcosysing) + ;'cos7(sin7—sin¢cos7tan¢)

cosy

= _%(Lcosasin7 + Lsinotany + Dcosqy)] (2.42)

k Direction Term.

dv cosq dy . dy singcosy 2 _singcos¢
cosyyy + Vtan¢ dt stnth + 2wV tang + w'r siny

2
+ —*cosvy|si +
) 7[ iny

cos¢gtangcosy ]
tany

= - %(Lcosasinq - L%%%% + Dcosv) (2.43)

These three coupled equations can be reduced by some
manipulation. Multiplying Eq (2.43) by -1 and adding the

product to Eq (2.42) gives

2Vw
cosy

- Vcosqtan dy + (cos¢siny - singcosysiny)
Ttany gy ¢siny ¢cosysiny
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2

. Ve ) cosy d singcos
W -7 cos7[s1n¢cosqtan¢] - Vtan¢ 3% - 2wV;—€£;E_1
: 2
_ erSInQCOSQ _ Y.Cosv[cosﬁtan¢cosj ]
siny r tany
_ _L_. _ L.sing
= 551natan¢ » tany

By combining terms and noting the trigonometric

identities

MR R A - c Ca

1 + tan2¢ = (c:osQ'/:)_1 and sin2¢ + cosQ¢ =1

the above expression can be rewritten to form a new equation

of motion:

V%% = g-%%g% + 2Vw(cosgtanysinyg - sing)
~ i v
A _ wzr[51n¢zg:£cosxﬁ] - £ cosycosytang (2.44)

Substituting Eq (2.44) back into Eq (2.43) produces

2
0 = cos7%¥ + 2Vwcos¢sinycosy - Vsinq%% + ¥'cosqsin7

2

+ %cosasinq + gcosq + w rsingcos¢siny (2.45)
® . . cos . .
3 Multiplying Eq (2.41) by - siny and adding this
v
: product to Eq (2.45) gives another equation of motion:
3 2 2 2
0 = —Vgl[sin7 + 925—1] + Y.cos7[22§_l + sin7]
t sin7y r s1in7y

2
+ gcosa[sinq + g%g;l] - g&%ﬁ% + 2Vwcos¢cos¢[sin1
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) .
. iy cos 2 . . cosqy )
: ‘Eb + siny ] + w rcos¢[s1n¢51n¢ + C°s¢sin7] X
- Rewritten, 3
0 .
h V%% = ¥'cosq + %cosa - gcosq + 2Vwcosg¢cosy
X 2 . . . 4
: + w rcos¢[s1n¢s1n¢51n7 + cos¢cosq] (2.46) _
b
" Substituting Eq (2.46) into Eq (2.42) produces the last
equation of motion:
B i
o> . 2 2 L 2 X
N 0 = sinygy + 7 COS 7 + _cosycosg - gcos 7 + 2Vwcosycosgcosy |
(s
oy + ercosqcos¢[cos¢cos7 - sin¢sin¢sin7]
~
A
N V2 L
\ - 2wVcosqcosycos¢p - ;'coszq - wzrcosz¢ - p cosocosy
[} -
®
¥ - + 12sinfy + g
M m
]
[ ¥
- This can be rewritten
-4 dv D . 2 . . .
3 dt - " p ~ &siny +w rcos¢[cos¢51n7 - 51n¢51n¢cosq] (2.48)
i
X '
. The Equations of Motion ;
-_‘. J
} In summary, the following six equations of motion for
=
~ three-dimensional atmospheric entry for a rotating planet
ey
2 have been derived and are listed below for convenience.
& :
- v __D_ gsiny + w2rcos¢[cos¢sin - sin¢singcos ] (2.49)
{ dt m 7 7 1 )
v
IR
s l-.. ]
\ g
-‘ 1]
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) -~ 2 )
. i;* Vgt = ¥‘cosq + %'cosa - gcosq + 2Vwcosgcosy

+

wzrcos¢[sin¢sin¢sin7 + cos¢cosq] (2.50)

V%% = %-%%%% + 2Vw[cos¢tan7sin¢ - sin¢]

2

_ 2 sin¢cos¢cos¢] _ v

w r[ cos7 p- cosqcosytang (2.51)
d .
ﬁ = Vsinq (2.52)
dé _ Vcosqcosy
dt ~ rcosg (2.53)
d¢ _ Vcosqsing
dt = - (2.54)

In the next section, these equations of motion are
9 transformed into a form more convenient to analyze.
c::;:‘

36

R N A N I A A A A A A T T T T o S g S R A N T Y




III. Approximations and Manipulation

of the Equations of Motion

The equations of motion for three-dimensional
atmospheric entry for a rotating spherical planet were
derived in Section II. In this section, assumptions and
approximations used in this thesis are defined and
discussed. In addition, the equations of motion are
transformed into a form more convenient to examine and solve
in later sections. The independent variable is changed from
time to non-dimensional altitude, h, and the equations of
motion are transformed into non-dimensional form by the
introduction of non-dimensional variables. A coordinate
system transformation is undertaken to utilize variables
which are more convenient for atmospheric entry analysis.

The equations of motion derived in Section II are

given by
dv _ D . 2 . . .
dt - " p — Bsiny + w rcos¢ (cos¢siny - singsingcosy) (3.1)

2
V%% = ¥'cos7 + %cosa - gcosvy + 2Vwcos¢cos¢

+ wzrcos¢(sin¢sin¢sin7 + cos¢cos?) (3.2)
: 2
vi¢ _ L.sing Y'cosqcos¢tan¢ + 2Vw(cos¢tanysinyg - sing)

_ w2rsin¢cos¢cogﬁ (3.3)
cosy .
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l. '

: Y dr .

.’ .;:."', T = Vsinq (3.4)
s~ d@ _ Vcosqcosy

N dt rcos¢g (3.5)
iy d Vcosqsin
& E% - ¥ ¥ (3.6)
N Note that the equations of motion for three-dimensional,

non-rotating planetary entry can be derived from the
rotating equations simply by setting the planet rotation

o

; rate, w, to zero. The equations of motion for the non-
- rotating planet assumption are therefore

" dVv D .

3 dt - " g ~ Bsinmy (3.7)
‘5 Vél = !%cos + &cosa - gcos (3.8)
p ° dt ~ r 7 m € 7 '

f .

- dy _ L.sing _ V?

- - L.sing _ ¥,

- th = o cosq o cosycosytang (3.9)
e

v dr _ .

2 dc = Vsiny (3.10)
N dé _ Vcosqycosy

" dt rcos¢ (3.11)
N d¢ _ Vcosqysinyg

& dt = r (3.12)
"

; As expected, comparison of Eqs (3.1) - (3.6) and Egs

: (3.7) - (3.12) shows that the equations of motion are

: significantly more complicated when the earth’s rotation is
l'

< accounted for.

by
'
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’: A few more variables require definition at this point. .
‘G

A e Let y be altitude and r_ be average planetary equatorial

D il

radius. Since r is the radius measured from the center of

)

:5 the spherical planet to the flight vehicle, h is defined as
S. the non-dimensional altitude and is given by

- Y

o h = - (3.13)

¥ *

L

-~

[l
- where .
i r=r+y=r_+ hr = r*(1+h) (3.14) ‘

L

v
¥ dr _ :
. Therefore, a5 = T« (3.15)
» dt  dr/dh _ T« 3
N and gy < dr/dt ~ Vsing (3-16) <
Y _:
E ° These relations will be used in the approximations discussed 1
Y, . ]
" on the following pages. g
< ﬂ
‘é Assumptions and Approximations i
o The rotating planet assumption and the errors associated

’

3 with the non-rotating approximation were discussed in

Jd

” Section I. Further assumptions and approximations are
>, presented below.

i Spherical Planet Assumption. The approximation of an

J

S oblate planet by a sphere is very common in analytical

: flight mechanics analyses and is used here. It is a 1
- ‘4
o reasonable assumption for planets having small ellipticity a
- such as Earth, Venus, and Mars but may not be as reasonable i
. - for planets such as Jupiter and Saturn which have relatively
[, :':':'
wl ’

'
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large equatorial bulges and ellipticities a magnitude

o greater than Earth’s (Chapman, 1958:2). For either case,

error introduced by the spherical planet approximation is
generally small for near equatorial entry trajectories.

Spherical Atmosphere Assumption. The spherical planet

approximation leads to the assumption that the atmosphere is
spherically symmetric about the planet. In reality, planets
are oblate spheroids causing their atmospheres to also have
an oblate form. In addition, other significant deviations
from the spherical model occur. A diurnal density bulge
occurs over part of Earth’s sunlit side due to solar
heating. Solar storms and fluctuations in a planet’s
magnetic field can cause significant changes in density for
a given altitude (Wiesel, 1986:66-69). However, since these

j effects generally occur at altitudes where aerodynamic
forces are minimal (and inclusion of more sophisticated
density models may introduce overcomplication of the entry
problem) these effects are generally assumed to be
negligable. The approximation of a spherical planetary
atmosphere is perhaps the most limiting assumption to the
atmospheric model. This approximation is better for the
Terrestial planets, with their slow rotation rates, than for
the large, outer planets (Duncan, 1962:276).

Gravitational Model. The spherical planet approximation

.' * -
3 also leads to the assumption of an inverse square
"
N . . . . . .
3 gravitational field. This is given by
"
»n
»
’ -
v A
¢
[4
]
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= —F (3.17)
(1+h)?

2
r g
* *
g(h) = g, —
r
where g, is the gravitational acceleration at the planet
surface.

Atmospheric Density Model. As previously discussed, the

planet’s atmosphere is assumed to be spherical and to rotate
with the planet with a constant rotation rate, w. The
planet atmosphere is mathematically modelled by an
exponential atmosphere with the inverse atmospheric scale
height, f. This is a very common atmospheric model that has
been successfully utilized in many studies on planetary
atmospheric entry. Atmospheric density, p, is given by

(Chapman, 1959:4)

= —fdr (3.18)

by

It is sometimes assumed that the product of the inverse
of the atmospheric scale height and the vehicle’s distance
from the planet’s center is constant for a given atmosphere.

With this model

~g

=By or p=p /e )T (3.19)

where p, is the density at the surface of the planet.

The product fr has been approximated for many of the
planet atmospheres. It has values on the order of 1000 for

most of the planets; the mean value of fr is approximately
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900 and 350 for Earth and Mars, respectively (Vinh and
others, 1980:5).

For this study a strictly exponential atmospheric model
is employed where the the inverse atmospheric scale height
is assumed to be constant. This approximation allows the

atmospheric density equation to be written in the form
-h/e
p=p.e = p e/ (3.20)

where € is a small number given by

(3.21)

Note that p is dependent on what planet is studied; for
Earth, the average scale height is about 7.1 kilometers
(Vinh and others, 1980:5) or about 23,300 feet.

For planetary atmospheric entry, r is approximately

equal to r_. This is an accurate approximation because the

thickness of an atmosphere is generally very small compared
to the planet’s radius. For example, the upper altitude
limit of Earth’s sensible atmosphere is often taken to be
350,000 feet. This value is only about 1.7% of the Earth’s

radius. Approximating r by r_ leads to

1 1

ﬂr* -~ Pr
and hence the values given in the literature for mean

planetary fr are considered equivalent to fr_ . € is

therefore a very small number (approximately equal to 1/900

42




for Earth) allowing it to be utilized as a small parameter
in the asymptotic expansions of Section V. Earth
atmospheric density values were calculated with this model
and plotted in Figure 10 with values obtained from the 1876
U.S. Standard Atmosphere (NOAA, 1976:Table IV). Comparison
of these results shows that the accuracy of the exponential

density model is reasonable for Earth with a constant value

for pr of 900.

- :';'.ﬁ'),.""..”

Aerodynamic Forces and the Ballistic Coefficient. Lift

vie ‘l&;l.l

and drag accelerations are given by the following familiar

L)
ped

expressions:

v

2
) pSV CL

2
pSV-Cy
~om  2nd = "2m

o (3.22)

where m is the mass, S is the aerodynamic reference area, V

is the velocity, CL is the 1ift coefficient, and CD is the

coefficient of drag for the flight vehicle.

The non-dimensional ballistic coefficient, B, is defined
to help place the equations of motion into a form easier to

solve. It is given by

SANL S

P.SCp
2mp

LY Tk ]

B =

Lo et

and is specified for each flight vehicle under

consideration. The ballistic coefficient is a function of

(BN S

a s

the vehicle’s physical characteristics and the planet

P
«

atmosphere and is considered to be a constant (Busemann and

others, 1976:18).
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The Speed Ratio. A non-dimensional variable is

N introduced to place the equations of motion into a more
manageable form. This variable is the speed ratio, u, which

is a Modified Chapman Variable used in many flight mechanics

analyses. The dimensionless Chapman variable, u, was
utilized as the independent variable in the equations of
motion in early analytical work on planetary entry. This

variable was given by (Chapman, 1959:7)

3 = Vcosqy
(gr)l/2

In later work (Buseman and others, 1976:11-13) it was

found that u is periodic at high altitude, and that other

dimensionless variables served better as the independent

o variable in the equations of motion. However, the Modified
Chapman Variable, u, was found convenient to use in the
derivation and analysis of the equations for planetary
entry. For brevity, this Modified Chapman Variable is
termed the "speed ratio", and is defined as the local
. horizontal component of the vehicle’s velocity (in the xyz
" reference frame) divided by the square of the circular
Sj orbital velocity.
N
: V2 cos? £1+h)V2c0527
N u = 1 _ (3.24)
- gr g r
., LI
i This equation can be rewritten as: .
: X
»
- 5
A I N
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v 1/2
N _ 1 ueg,.r,
S V = cosq (—m—)] (3.28)
- Differentiating Eq (3.18) with respect to h gives
"
du _ 2V(1+h)cos27.§2
' dh g.T, dh
{ 2V2£l+h)cos siny.d V2 cos?
b - 1 'J-a—g + —S98 7 (3.26)
"; 8.T. 8.7,
;
Substituting Eqs (3.20), (3.23), and (3.25) into Eq (3.22)
(\]
:: gives a non-dimensional equation for the aerodynamic drag
)
; acceleration:
<
D _ 2P~ -h/e _ 2 -h/e
o \' 2mSCDe = PBV’e
or
o b
b ugBexp(-h/e)
m 2 (3.27)
€ (1+h)cos“q
Likewise
L D CL CL ug*Bexp(—h/e)
m - @l Cn 2 (3.28)
D D e(1+h)cos“qy
Changing the Independent Variable
The equations of motion for a rotating planet are now
rewritten using the expressions derived above. To change
) the independent variable from time, t, to non-dimensional
~
% altitude, h, the equations of motion are multiplied by Eq
.
Q (3.16). Direct substitution into the dV/dt equation gives
.—
;
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1/2 1/2
av _ ug*r*Bexp(—h/e)F(1+h) / ) 8,757 [ (14h) /
?3. dh € (1+h) cosysinqg jug, T, (1+h)2 ug,r, a
i1/2
+ er*Z(;;2%[§é+3) ‘cosgcosy(cos¢gsiny - singsingcos7y)
* x|

This equation can be reduced to

n.|n.
ol

€cosysinfy

Bexp(—h/e)[ug*r*'1/2

g r 1/2
L
(1+h) - cosT ______‘l

u(1+h)®

(1+h)3r*3“/2

2cos¢, T J *(cos¢siny - singsingcosy) (3.29)

tan7y

»*

Direct substitution into the dvy/dt equation gives

r CL.ug*Bexp(—h/e) r*(1+h)cos27

cosy |, =

- + . CO80
~ r_(1+h) sing C

2k

D €(1+h)c0527 siny Ve, T,

°
e. 9 1/2
) g cosYy r*(1+h)cos 0 ) 2_c0§¢cosﬂ con (1+h)
(1+h)’ s “siny T g r
siny ug,r
2
r° (1+h)cos¢ 2
+ W= siny ‘ (singsinysing + cos7cos¢)'£%é%%fg§;1
This equation can be reduced to
C 2
dy _ 1 . _L.Bcosae—h/e_ cos
dh (1+h) tany CD €sinvy (1+h)utany
1/2
+ 2w (1+h)r*] .cosgcosy
ug tany
2r*(1+h)2cos¢cosq
+ w ug, : tany (singsingsiny + cosycosg) (3.30)
Ay
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Direct substitution into the dy/dt equation, Eq (3.3), gives

2
dy CL.ug*BexP(_h/e?sind,r*cos 7 [(1+h)] _ cosqcosytang

ur. g,

dh — G, e(1+h)c0527 cosy siny

sinq * (cos¢gtanysinyg - sing)

2wr*cos'y[(1+h)]l/2

uE*r*

wzr*(1+h)zsin¢cos¢cos¢ r*(1+h)c0527

cosqysin7y ug, r
This reduces to

dy C, ge~h/€

sing cosycosytang + 2w [

(1+h)r_1'/?
dh 65'€cos7sin7 T 7 (1+h)sinq tany |

Ug*

w2r*(1+h)25in¢cos¢cos¢

* (cosgptanysing-sing) - ug_ tan7y
*

The d6/dt equation becomes

dé cosy

dh - (1+h)cos¢tany

and the d¢/dt equation becomes

d sin

dh =~ (1+h)tany

The dr/dt equation is incorporated into the other

r_(1+h)siny "+

(3.31)

(3.32)

(3.33)

equations, reducing the number of equations of motion from

six to five. The du/dh equation also incorporates the dV/dh

equation. Combining Eqns (3.19) and (3.20) allows the du/dh

equation to be rewritten as




1/2
du _ u(@+b)1 77" gy u Jdy
j o an ~ 2COS'1 —rg— ah + —(—1:57 - 2uta.n'7 dh ‘
NPy * O

N Substituting in for the dV/dh and d7/dh terms using Egs f
v, |
3 (3.29) and (3.30) eliminates V and gives the du/dh equation

h w

as a function of u. ;

: - 1/2 ug r 1! /2 3
s du _ u + 2cosqy u(i+h) : —Bezp(fgjg) B {
i dh (1+h) | r.E, ecosysiny | (1+h)

N

11/2 3. 341/2

'Q BT 2 cos (1+h) Tk .
-, T o8 3 Tw tanvy ug b
N u(1+h) ] .

\.

!
> . (cos¢sin’7—sin¢sin¢cos'y)]

: - outann~: 1 . E& Becosg -h/e _ cos’

‘: 7 (1+h) tany CD €siny (1+h)utany

1§ .

3 ° 1/2
. ;

? + 2w (1+h)r* cos¢cosy a
Y ug tanqy )
v 1
o, [
: 2 T (1+h) .cosgcosy ‘
o + w? g, tany (singsinygsiny+cosycos¢)

.
TS

o This rather formidable equation reduces to the following
o du _  -u N 2uBe"h/E 1, Sk.cosa
= dh = (1+h) € sinq CD cosYy :
= 1
o (1+h)ur_}! / r )
* E 92 2 b3 b
- | —————— ‘cosgcosy + 2w’ (1+h)“——cosycos¢*

.. g, €. ]
2 !
N cos¢siny singsingcosy . . . ;
? . tany - tany - singsingsiny - cosgcosy ]
. }
L 4
: vy
W
X
M
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The du/dh equation can be further reduced to

1/2
du _ _-u - 2uBe—h/e 1 + 9L'tan7cosa - 4w Si:klzz: )
dh (1+h) esiny CD £,
2(1+h)2r* cos¢singsing
‘cos¢cosy - 2w . (3.34)

g tanvy

*

Another variable is introduced to simplify the equations

(Busemann and others, 1876:19).
let = cos hence dg _ -sin dy (3.35)
q 7 ’ h Tdn :

Using these relationships, the dvy/dh equation can be

rewritten

2 C -h/e r (1+h) 1/2
dg _ __q [q _ _ _L.Be " - L A
dR - (1+h)[u 1] CD c cosg 2qwcos¢cos¢[ ue, ]
- wzr*qa(1+h)2'§§§Q(sin¢sin¢tan7 + cos¢) (3.36)

*

The equations of motion for three-dimensional, rotating
planetary entry have now been transformed from Egqs (3.1) -

(3.8) to the following:

1/2
du _ _-u a 2uBe_h/6 1 + EL'tanqcosa - 4w ﬁl:ilfi: .
dh (1+h) e€siny CD g,
(1+h)?%r e
‘cosgcosy - 2w’ *.cos¢singsinyg (3.37)
g, tanvy

215
It

2 C ~h
o] - LB /€

r, (1+h)]' /2
€.~ ¢ —coso - 2qwcos¢cos¢[———————}

*
ug*
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- w2r*q3(1+h)2'§gfﬁ(sin¢sin¢tan7 + cos¢) (3.38)
1/2
dy _ EL.Be-h/esina _ cosqcosytang . 2w (1+h)r, .
dh ~ C, ecosqysin (1+h)sin tan ug
D 78109 7 7 "

wzr*(1+h)2sin¢cos¢cos¢

* (cosgtanqsing-sing) - ug, tany (3.39)
d6 _ cosy

dh = (1+h)cos¢tany (3.40)
d¢ _ sin

dh 7 (1+h)tanqg (3.41)

The Classical Orbit Variables

Up to this point, the equations of motion have been
presented as functions of latitude, longitude, heading
angle, and other variables. This form has been often
utilized for atmospheric trajectory simulation by numerical
integration. For ease in studying and in deriving solutiomns
in later sections, these equations are placed in terms of
the classical orbital elements, (1, I, and a. For a non-
rotating, spherical planet, these variables are constants of
motion for non-atmospheric flight. This characteristic
greatly simplifies the solution derivation for the non-
rotating planet case. I is defined as the orbital
inclination angle, (I is the longitude of the ascending node,
and a is the argument of latitude at epoch. Basic spherical
trigonometric relations are found in Appendix A and these

relations are applied to transform the variables 6, ¢, and ¢
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in terms of the orbital elements, a, I, and I. Figures 11
o and 12 show the geometry of the two sets of variables.
The following relations, derived in Appendix A, relate

6, ¢, and y, and a, {1, and I.

R R A AN AR T AT U U N

sing = sinlsina (3.42)
cosl = cosgcosy (3.43)
siny = 1200 (3.44)
. t
sin(6-01) = EE%% (3.45)
siny = sinIcos(6-1) (3.46)
cosa = cosg¢cos(6-11) (3.47) i‘

Differentiating Eq (3.43) gives:
c; sinl-dI = cos¢sing-dy + singcosy-d¢
Therefore

dI _ cos¢sing dy singcosy d¢

h = sinl dh ' " sinl dh
dl _ cos¢sinyg dy . singcosysiny (3.48)
dh sinl dh sinltanqy(1+h) )

Substituting for d¢/dh, Eq (3.39), gives

dl  _ Sl..__cosasinaBe_h/e _ cosacosqcosgtang
dh — C ecosysingy (1+h)sinqg
r (1+h) 1/Zcosaz
+ 2w uE, tanq(c°s¢tan75in¢ - sing)
2 . .
2 1+h . singcoslsi
- w r*-Gé_€;%7c05051n¢cos¢cos¢ + cos¢(?+h)tan22inl (3.49)
L 3
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The last term cancels with the second term and with
application of some of the spherical trigonometric
equations, Eqs (3.42) - (3.47), the dI/dh equation is
transformed from a function of 6, ¢, and ¢, to a function of

a, I, and I.

dI _ Ek_cosasinaBe“h/e+ o
dh Cp e€cosqsiny w

.cosasinl, (3.50)
ug_ )

r, (1+h)]'/?
] tan7

2
] s _ 2, _(1+h) . .
(cosatany sina) w'r, ugmtanr’(s1nIcosI<:oscxs:1na)

To find an expression for da/dh in terms of the desired
variables, Eq (3.42) is differentiated.

d¢ _ cosIsina, dIl sinlcosa . da

-—+—_—a—

dh ~ cos¢ h cos¢ h

Substituting for d¢/dh with Eq (3.33) produces

da _ 1 tana dl
dh = (1+h)tany ~ tanl dh (3.51)
da 1 CL.sinasinoBe-h/E

dh = (1+h)tany Cj ecosysinytanl

sinacosI

tan7 (cosatany - sina)

- 2w

r (1+h) 1'/2
ug ]

»

2
+ wir '—ilihl—sinQacos2I (3.52)

* ug tanqy

To find an expression for dfi/dh in terms of the desired

variables, Eq (3.46) is differentiated.

siny = sinlcos(6-1)
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cosy-dy = -sinIsin(6-Q) " [d6-dl] + cosIcos(6-0) - -dI

By substituting in Eqs (3.32) and (3.45), this

expression can be rewritten as

d¢ _ cosItang dii _ cosltang . coslcosa, dl (3.53)
dh = cosy d (1+h) tanycos¢ ~ cosycosg dh ‘

Rewriting Eq (3.48) gives another expression for dy/dh:

dy _ sinI dI  singcos
dh = cos¢siny dh (1+E)tan7 (3.54)

Equating Eq (3.53) and Eq (3.54) gives dfi/dh as a function

of dI/dh.
dan _ cosy cosltang _ singcosycosg
dh = cosItang| (1+h)tanqycos¢ (1+h)tanqy

dI . sinl coslcosa

T dh [cos¢sin¢ - cos¢cos¢]]

dn _ cosy cosltang cosIsing
dh = cosItan¢tang (1+h)tang cos¢ cos2¢
dI, cosy cos¢
T 3h cosIsin¢[cosa cos¢cosa]
This simplifies to the following
dl _ tana dI
dh ~ sinl dh (3.55)

Eq (3.55) can be "de-simplified" by substituting Eq (3.50)

into this equation.

singsina
ug

CL Be~b/€gingsi 0y [Fa(14h) ’/2.
- C esinqcosysinl  tany

*
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w?r, (1+h)’

e '[sinacosatan7 - sin a] - GE—EZE;~—'cosIsin2a (3.56)
"7 *

The du/dh equation, Eq (3.34), can easily be transformed
to the desired orbital variables by application of the
spherical trigonometric relations.
du _ _ u .. 2uB —h/e-[l + SL'cosatan
dh ~ (1+h) esiny CD 7

1/2
~ 4wcosI ur*(1+h) - 2ulr ,(1+h)2cosasinzIsina (3.57)
g, * g*tan7
The last equation of motion to be transformed is the
dq/dh equation, Eq (3.38). The w? term of Eq (3.38) is
2 3 (1+h)? . . 2
- - wr.gq LGE:l [cos¢51n¢s1n¢tan7 + cos ¢]
®
This term can be rewritten as
2
- wzr*q3£%é§l [cosasinasinQItanq + 1 - sinzlsinza]
ok
The dq/dh equation transformed into the orbital elements is
2 C, n.-h/e r (1+h)1'/?
S da _ ——g——[g - 1] - —L'EE————COSU ~ 2qwcosl R +
o dh (1+h) Llu CD € ug_
-,
N 1+h)?
: - wgr*qaiﬁé~l [sinacosatanqsinQI + 1 - sinZIsinQa] (3.58)
E
In summary, the equations of motion for three-
dimensional rotating planetary entry have been derived for
.; . the independent variable, non-dimensional altitude, and some
~ ::.:\
-, o
‘
A
A
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convenient dependent variables including orbital

o 43‘ inclination, longitude of the ascending node, and argument
9y i
9“ L4
of latitude at epoch. These equations are given below.
8 d 2B h/ L '
o du _ _ u _ u , -hj/e 4, d
Q dh (1+h) esingy € 1+ CD cosatan7]
.‘ :
> ur_(1+h) 1/2 2 . 21 .
‘f _ 4wcosI * _ 2u?r .(1+h)° cosasin” Isina (3.59)
7 g, * g*tan7
- -
W 4]
- 2
2 C -h/e r_ (1+h) 1/
. dg _ _s_[g - ] _ _L.Be ", _ LA
db (1+0) lu 1 CD < cosg 2qwcosI ug,
] :
Wb 9 :
' - wzr*q3£%éhl [sinacosatan7sin21 + 1 - sinzIsinQa] (3.60) ‘
>
e _ 1/2
» dI _ Ek.cosasinaBe h/€+ o r, (1+h) .
N dh CD €cosqysiny w ug,
‘®
¥ ‘ cosasinl
o) '—~€;H§——(cosatan7 - sina)
’ L2 :
f - w2r*'—lli—l—(sinIcosIcosasina) (3.61)
ug*tan7
o
O _ 1 / 2
o dan _ EL_Be h/esinosina + 2w r,(1+h) .
dh = C esinycosysinl ~ tany| ug,
f? w2r*(1+h)2 ) f
y ‘[sinacosatan7 - sin a] - EE:EZHE__.COSISin a (3.62) )
. .
v da _ 1 _ E&,sinasinaBe-h/e :
: h = (1+h)tanqg CD ecosysinytanl
'J
‘ /2
2 r*(1+h) 1 sinagcosl
- 2w (cosatanq-sina)
d . ug tanvy
’, AT *
'~ A 1
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2
+ wir '—ilibl—sinzacoszI (3.63)

- *> ug*tan7
S
Singularities exist for these equations of motion for
flight path angle values of 0.0 and 90.0 degrees and for an
orbital inclination angle of 0.0 degrees. Special
consideration must be taken when evaluating Eqs (3.59) -
(3.63) near these values.
.
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IV. Examination of the Rotating Planet Terms

\"}
} The rotating Earth terms in each of the equations of K
q motion are examined in this section. This examination is
" conducted for orbital inclination angles ranging from 0.5 to A
EE 75.0 degrees and vehicle speeds ranging from circular
b
o orbital velocity to low supersonic speeds, where terminal
) maneuvers such as landing approaches are usually initiated.
i The rotating Earth terms are set equal to zero for each :
j equation of motion and are then checked for the existance of \
: real solutions. The existance of real solutions for any of
3 these expressions indicates trajectory states (specific {
E combinations of values of u, h, q, I, I, and a along an
L ® entry trajectory) exist where that particular non-rotating
? Earth equation of motion is valid. In a later section, \
Ai these trajectory states will be examined in more detail. s
‘ﬂ The non-existance of real solutions to the rotating Earth
;: terms in any one of the equations of motion indicates the
e )
; corresponding non-rotating equation of motion will be
N
* invalid for any Earth entry trajectory. A solution that
g accounts for the Earth’s rotation is needed for any non- :
;: rotating Earth equation of motion that is invalid for the
3 full range of inclination angle and speeds investigated.
3 These solutions are developed in Section V by application of
2 the method of matched asymptotic expansions.
g e
g
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.I.f

The Second Small Parameter

To begin, the equations of motion are placed in a more
convenient form to work with. In Section III, € was shown
to be approximately equal to the ratio of the atmospheric
scale height and the radius of the planet. A convenient
second small parameter is introduced to replace the w terms
in the equations of motion. This second small parameter is
defined as the square of the ratio of the planet’s
rotational velocity at the equator and the prograde,
equatorial circular orbital velocity at the surface. The

orginal small parameter, €, is re-labelled € and the second

small parameter is labelled €,

2
1 wr o Tu
€, = and €, =/ = w — 4.1
G ? {(g*’*)’/z} Ex @
For Earth, € = 1/900 and e, = 1/289

The equations of motion for three-dimensional, rotating

planetary entry, derived in Section II, now become

-h/e C
du - u 2uBe 1 L
W = - ‘|1 + & tanqcoso
dh (1+h) elsinq [ CD ]
/2 2cosasin2Isina (4.2)

1
- 4[52u(1+h)] -cosT - 2e, (1+h) -

2 o -h/e 1/2
_q [a _ _ _L.Be ""i _ (1+h)
= (1+h)[u 1] CD 3 CcOSg 2q[62 " ] cosl

=5
|
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3
- 62(1+h)2'%—(tan7sinacosasin21 + 1 - sin2Isin20) (4.3)

‘:":‘\
)
da _ 1 N EL.Be_h/€1_ singsina
dh = (1+h)tany CD € cosqsinytanl
2 .
_ §1+h§]1/ .sinacosl o
2[62 3 ——Ezgq——(cosatanq sina)
+ € (1+h)2.s_in?_aﬂ (4.4)
2 utany ’
C -h/e . . 1/2 .
di _ "L, Be i1 singsina [ (1+h)] “sina s
dh = C €, cosqYsinysinl + 2 € u tanv(cosatan7 sina)
D 1
- € (1+h)2,sin2acosI (4.5)
2 utanvy ’
dI _ SL_Be_h/El.sinacosa . 2[ §1+h)]1/%cosasin1,
dh = Cp €, cosysiny €27 tanq
) . i Isinl
: * (cosatany - sina) - 62(1+h)2'c°50513z:g: 2ia (4.6)
It was previously noted that the latter three of the
above equations are coupled:
df _ tana dI
dh ~ sinI dh (4.7)
da _ 1 _ tana dI
dh = (I+h)tany ~ tanI dh (4.8)
The Rotating Earth Terms
The equations of motion for lifting atmospheric entry
for a rotating Earth can be written as the sum of the
equations for a non-rotating Earth and of the terms that
&
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- .

account for the Earth’s rotation. The equations for a non-
rotating Earth are the terms in Egqs (4.2) - (4.6) which do

not contain €, and hence are not a function of w. The non-

rotating Earth terms are referred to as the "Nonrotate
equations" and the rotating Earth terms in the equations of
motion are simply referred to as the "Rotate equation".

Speed Ratio Equation. The rotating Earth equation of

motion for speed ratio, given by Eq (4.2), can be rewritten

as
du _ Nonrotate + Rotate
dh ~
where
du = o - 2uBe_h/e1° 1+ EL'tanqcosa]
dh Nonrotate (1+h) €, s1nq CD
1/2
%% = - 4[62u(1+h)] cosl
Rotate
. 2 .
2 cosasin’ Isina
- 262(]+h) tany (4.9)
Flight Path Angle Equation. The rotating Earth

equation of motion for flight path angle, given by Eq (4.3),

can be rewritten as

= Nonrotate + Rotate

sis

where
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& 2 C, n.-h/e

o dg - _L[Q._ - 1] . L.Be 771,
) AN = COS80
7 dh Nonrotate (1+h) Lu CD €

p 1/2

o %ﬁ = - Zq[eQLl%hl] cosI (4.10)

‘4 Rotate

* 2 8 2 2 2

- - 62(1+h) '%—(tanqsinacosasin I +1 - sin“Isin‘a)

' .

'

3

h Argument of Latitude at Epoch. The rotating Earth

y equation of motion for argument of latitude at epoch, given

) g

; by Eq (4.4), can be rewritten as :

’
: \
a% = Nonrotate + Rotate ;

’

f" I

% where :

Cd [}

it

' ‘e da _ 1 _ EL,Be—h/el_ singsina ‘

- dh Nonrotate (1+h) tany CD €, cosqsinytanl

s da (1+h) 1/2 sinacosl \
ah = - 2[52 S ] '——IEH———(cosatanq - sina) N

Rotate 7

E 2 sin‘acos’I ,

? + 62 (1+h) ’—W (4.11)

P ’

Y

. Longitude of the Ascending Node. The rotating Earth

s equation of motion for longitude of the ascending node, b

* given by Eq (4.5), can be rewritten as

" df :

. i = Nonrotate + Rotate

3 dh

¥

- where

N A J

" T K

‘ .

Y
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dn _ 9& —h/e sinosina
dh Nonrotate CD E1 cosysinysinl
1/2
g% . _ 2[ (1+h)] :;§$(cosatan" - sina)
otate
.2
I
¢, (a7 -sintacoel (4.12)

Inclination Angle Equation. The rotating Earth equation

of motion for orbital inclination angle, given by Eq (4.6),

can be rewritten as

dl = Nonrotate + Rotate
dh
where
dI - SL.Be—h/El,sinacosa
dh Nonrotate CD e1 cosqysiny

1/2
%% = 2[5 ilihl] EQEgﬁi&l(cosata,n'y - sina)

Rotate 2 v tany
2 ,cosasinacoslIsinl
- €, (1+h) utany (4.13)

Investigation of Real Solutions to the Rotate Terms

Egqs (4.9) - (4.13) are the Rotate equations, those parts
of the complete equations of motion which account for the
rotating Earth. In the following pages, the five Rotate
equations are each set equal to zero and then examined for

the existence of real solutions.
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Rotate Term Solutions for the Speed Ratio Equation.

\_\:-‘

AR From Eq (4.9)
du [ 1/2 2cosasinQIsina
TN = - 4|€ u(1+h)] cosl - 2¢_ (1+h)
dh Rotate 2 2 tany

Setting this equation equal to zero and solving for one of

the five variables gives

. . 2
_ -1 |-Ccosasinasin‘1
= tan [ ScosT ] (4.14)

Rotate = O

where C

[’ )

Substitution of a few realistic combinations of u, h, I,
and a indicate real solutions exist for Eq (4.14).

Rotate Term Solutions for the Inclination Angle

°
o Equation. From Eq (4.13)
( ) 1/2 .
g% = 2[6 1+h ] 'Eg§g§l§l(cosatan7 - sina)
Rotate 2 v tany
2 ,cosasinacosIsinl
- €2(1+h) utany
Setting this equation equal to zero and substituting in Eq
(4.15) for C gives
2sinIcosa[cosa - :;:g] = t‘a‘n,’sinacozsarsinIcosI (4.16)
One set of trivial solutions to this equation is in the form
sinlcosa = O for any C and
7
oo
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The w term contribution to the dI/dh equation of motion is
therefore equal to zero when sinl and/or cosa = 0. However,
due to the fact the equations of motion are singular for
sinI = O as discussed in Section III, the trivial solution

is actually
cosa = O (a = ... -3%/2, -n/2, /2, 3n/2, ...)

Nontrivial solutions to Eq (4.16) can be found by solving

for one of the five variables.

_ tap! |sina + CcosIsina (4.17)

Rotate = O 2cosa

Substitution of a few realistic combinations of u, h, I, and
a indicate real solutions exist for Eq (4.17).

Rotate Term Solutions for the Argument of Latitude at

Epoch. From Eq (4.11)

1/2 .
%% = - 2[62£lﬁhl] 'Elg%£§9§l(cosatan7 - sina)
Rotate 7

.2 2
2. .8in"a cos‘1
+ 62(1+h) atany

Setting this equation equal to zero and substituting in Eq

(4.15) for C gives

sina] _ _C

L .2 )
tany) - tany sin“acos‘1 (4.18)

ZSinacosI[cosa -

One set of trivial solutions to this equation is in the form

sinacosl = 0 for any C and v

67

A AR AR AN

A S .




N T T

\ The w term contribution to the da/dh equation of motion is !
.f-- ~g
gt hence equal to zero when sina and/or cosl are zero. 2
) However, due to the range of inclination angle selected for o
ol
X study, cosl is never equal to zero and the trivial solution x
is N
. sina = O (a = ... 270, =7, O, m, 27, ...) -
N Nontrivial solutions to Eq (4.18) can be found by solving 4
L) L,
' for one of the five variables in this equation.
hJ
.
- tan”! Ccoslzégg + sina (4.19) %
z Rotate = O a o
)
- Substitution of a few realistic combinations of u, h, I, and .
y a indicate real solutions exist for Eq (4.19). .
. . Rotate Term Solutions for the Longitude of the A
\e
. - Ascending Node. From Eq (4.12) .
dn (1+h)7'/? sina 9
dh = 2[62 " J 'EEE—(cosatan7 - sina) -
L Rotate 7 ‘
2 N
. N
! ~ € (1+h)2,s1n a cos] N
v 2 utanvy ~
4 B
A" Setting this equation equal to zero and substituting in Eq ™
(4.15) for C gives '
25ina[cosa - 2122] CsinzaCOSI (4.20) 2
tan7y tany .
One set of trivial solutions to this equation is in the form .
-
sina = O for any C, I, and v .
£ 3
]
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Hence, the w term contribution to the da/dh equation of

5%

XN

motion is equal to zero for a= ... -27, -x, O, n, 27, ... ]

Eﬁ Nontrivial solutions to Eq (4.20) are in the form
3
: - van"! CcosIsina + sina (4.21) ;
. P 2cosa ' N
Rotate = O
s
"~
y Substitution of a few realistic combinations of u, h, I, and
A
S a indicate real solutions exist for Eq (4.21).
Coupling of Three Rotate Term Solutions. The non-
i trivial solutions for the rotating term expressions are :
2 ‘
. identical for the da/dh, dfi/dh, and dI/dh equations, Egs
X (4.17), (4.19), and (4.21). This can also be seen by noting :
e _
ﬁ that the dI/dh, dfl/dh, and da/dh equations are coupled by ]
o Eqs (4.7) and (4.8).
~E)
.i dn tana dI :
Lo dh sinl dh (4.7) '
L
LS
i d 1 tana, dI
o da _ tana dI
. dh (1+h) tany tanl dh (4.8)
v
-
o These coupling relations can be written in terms of the
[3 Nonrotate and Rotate expressions: '
= J
[ dn _ tana ,dI tana, dl (4.22)
o dh|Nonrotate = sinI dh N sinl dh Rotat '
. + Rotate onrotate otate
L _d_a_ _ 1 _ ta.na__d_I
N dh|Nonrotate =~ (1+h)tanqy tanl dh N
~ Nonrotate
(8 + Rotate
N tana,K dl ( 3
-~ ‘S5 4.23)
. tanl dh Rotate
o _--'.'-
W f‘v J
' 69
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Since the Rotate terms contain w or €, by definition, the

first term of Eq (4.23) must be a Nonrotate expression.

Hence,

da tana dI

aa - _ tana dal (4.24)
dh Rotate tanl dh Rotate

In addition

df tana dI

= = : ST (4.25)
dthotate sinl dh’Rotate

From Eqs (4.7) and (4.8) it can be seen that the dfi/dh
and da/dh equations differ significantly. However,

comparing like terms indicates

da df

T = - cosls
dh Rotate dh

(4.26)
Rotate

These results simplify the search for the trajectory
states where the non-rotating Earth equations of motion are
valid. Instead of detailed examination of the non-trivial
solutions of all three of the da/dh, dQ1/dh, and dI/dh Rotate
equations, examination of only one of them is required. The
trivial solutions for rotating term expressions for the
dfi/dh and da/dh Rotate equations are the same, sina = O, and
the trivial solution for the rotating term expression for

the dI/dh Rotate equation is cosa = O.

Rotate Term Solutions for the Flight Path Angle

Equation. From Eq (4.10)
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&
1/2
_9@ %ﬁ = - 2 [e2£lﬁbl] cosl

% » Rotate i
A 2.9 2 2 2
b - 62(1+h) '%—(tanqsinacosasin I+ 1- sin“Isin“a)
e
) Setting this equation equal to zero gives
- 0 = 2qA1cosI +q3[tanqsinacosasin21 + 1 - sinZIsinga] (4.27)
);.‘ u 1 / 2

where A1 il sa— (4.28)
N 62(1+h)
e
K
o
u Because singularities exist for I or 4 = 0.0 or 90.0
}
. degrees, q = 0 can not be considered as a trivial
\"
N solution. To examine possible solutions to Eq (4.27), some
V. ;
& additional variables, Ai’ are defined for convenience.
) o

let A, =1 - sin’Isin’a (4.29)
>
'
5 )
i A3 = sinacosasin’I (4.30)
ﬁ A4 = 2A]cosI (4.31)
52
5 Using these variables, dividing by q, and remembering
. q = cos7y, equation Eq (4.27) can be rewritten
Ped
2 A + qu tany + qu = 0
- 4 3 2

A4 + A2cos27 = - Aasin7c087 (4.32)
~
e Squaring this expression
z

>
R
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A 2cos4'y + A42 + 2A4A2cos27 - A32c0527 + A32cos47 =0

2

2 2.2 a2 2 _
(A2 + A3 woo+ (2A4 A2 A3 v o+ A4 =0 (4.33)
where v = q2 = cosz7 (4.34)

Eq (4.33) can be easily solved in the form
AVl + Bu+C=0
where A =A% + A%, B=2AA -A 2, C=A2%, and

1/2
_ B s+ [B? - 4ac]
v = 2A

The Rotate term solution for the flight path angle equation
is hence given by
) [ s ]1/2
—2A4A2 + A3 * A - 4.A4A2A3 - 4A A

v = . (4.35)
2A? + 2A3

At this point v has been placed in terms of the

variables A]’ A2, AB’ and A4. Looking at each of these

expressions individually aids in the determination of

general trends of the values of v.

AQ Equation. It can be easily seen that A2 has a
maximum value of 1.0 when sina = 0, for any value of sinl
within the inclination range of interest, 0.5 < I ¢ 75.0

degrees. A minimum of 0.0670 occurs for A2 when I = 75.0
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degrees and a = 90.0 degrees or 90.0 = 180.0 degrees.

Thus, A2 is never negative.

53 Equation. A3 has a maximum value of 0.466 for
I = 75.0 degrees and a = 45.0 degrees. A minimum value of
-0.466 occurs when I = 75.0 degrees and a = -45.0 degrees.
é4 Equation. Since A1 is always positive, it can
be easily seen A4 has a maximum value of 34.0 for
I = 0.5 degrees, u = 1.0, and h = 0.0 . A4 has a minimum of

0.0 for uw = 0.0 . Minimum values of A4 for non-zero u occur

for I = 75 degrees. For a prograde orbit A4 is always
positive.

Solutions. For real solutions to exist in Eq
(4.35), and hence for the rotating terms in the dq/dh
equation to ever have a zero contribution, the expression

within the square root must be positive. Factoring A3 out

of the root expression in Eq (4.35) leaves the following

condition for the existence of real roots

2 2
A3 - 4[A2A4 + A4 ] >0 (4.36)
where A2 and A4 are always positive and A3 can be positive

or negative over the range of inclination angle examined.
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% Eq (4.36) indicates real solutions to the dq/dh Rotate
" oy
5 8 equation do not exist for realistic entry trajectories "

except for values of u corresponding to low speed, subsonic
f
- and near subsonic flight. Therefore, no real roots to Eq
b,
L4
R (4.35) exist for orbital inclination angles between 0.5 and
. 75.0 degrees and vehicle speeds ranging from circular b
i
X orbital velocities to low supersonic speeds. This result A
o indicates the non-rotating Earth dq/dh equation of motion is

invalid for Earth atmospheric entry for the ranges of
o orbital inclination angle and velocity investigated. !
y a
X Therefore, a first order solution (Section V) to the
o, complete dgq/dh equation is required for Earth atmospheric
f 2
k entry analysis. This solution is developed in the next )
i . section using the method of matched asymptotic expansions.

o

-
f
p } ;
'@
- ,
.
o
La
A
’
'Cs
‘%
=
3
~ !
\‘ l
“~
> .
B
‘ L)
#‘1, -f_‘.' ‘
7, Lol ]
*,
o, .
v
" 74

)n\ - e

S ATRTA T AT T MR R S s TS S e
N N R N G I N A A NN A

VA T T N T R N T N A e A




R R N W W T W RO OO I IO RO R T N A Y NSV NI .

A

o
! $ V. Solutions to the Equations of Motion
A
»
B - Using Matched Asymptotic Expansions
N
In Section IV, the terms in the five equations of motion
. that account for Earth’s rotation were examined. It was
: determined that trajectory states exist for four of the five
agl equations of motion where the rotating Earth terms give a
.y
K zero contribution. For the fifth equation of motion, the
dq/dh equation, it was shown that the rotating earth terms
Q always have a non-zero contribution for realistic lifting
)
r entry trajectories with entry inclination angles between 0.5
d and 75.0 degrees and speeds ranging from circular orbital
]; velocities to low supersonic speeds. Therefore, to
; adequately model Earth atmospheric entry, a solution to the
o dgq/dh equation is required that includes the rotating Earth
;E effects. This solution, along with the non-rotating Earth
L
N solutions to the other four equations of motion, is
) developed in this section, by application of the method of
Al matched asymptotic expansions.
N
) Combining the Small Parameters
In Section III, € was defined to be the ratio of the
‘.
¥
. planetary atmosphere scale height and the planet’s radius.
»
W A second small parameter was introduced in Section IV to
3 non-dimensionalize the rotating planet terms in the
D
equations of motion. This second small parameter was
defined as the square of the quotient of the planet’s
w ) rotational velocity at the equator and the prograde,
LN, !
)
" '
KX 75 :
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k)
%
; equatorial circular orbital velocity at the mean planetary
b o0 .
'Y e radius.
a
Yy 2
) wr r
Y 1 * 2" %
€, = == and € = |— = w— (6.1)
> 1 pr 2 1/2] g
l * (g*r*) *
& The general equations of motion for three-dimensional,
W
. rotating planetary entry were given in Section IV in the
)
y form
) -h/e C
. du _ - u 2uBe 1, L,
1: dh = (1+h) i [1 + G tanqcosa]
\ €,siny D
l
- 4[e u(1+h)]1/2cosI - 2¢ (1+h)2°°s"Sin215i“° (5.2)
J 2 2 tan7y )
Y 2 C h/e 1/2
: d_qz__q__[g__]__li.ﬁ_l _ [L&)_]
- db (1+h) lu 1 CD e cosg 2q €, a cosl
! 2 3 2 2 2
& - 52(1+h) 'g—(tan7sinacosasin I +1 - sin“Isin“a) (5.3)
) da _ 1 _ EL.Be—h/el, sinosina
: dh = (1+h)tanqy CD €, cosqysinqtanl
: /
™ 1/2 .
. _ §1+h}] sinacos] o
. 2[62 3 tanq (cosatany - sina)
> 2 2
- 2 .sin“acos’I
\f * €2(1+h) utany (5.4)
;
N C -h/e . . 1/2 .
dl _ L. Be 1 _singsina [ jl+h)] "sina -
P>, dh — Cp €, cosysinysinl *2le,mN tanv(cosatan7 sina)
~l
l
) . 2
' 2 ,sin‘aqcosI
+ 52(1+h) ~utany (5.5)
* » -
': -:‘\J
s
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L.Be_h/€1,sinacosa . 2[6 11+h)]]/%cosasina_ ,
D € cosqYsiny 2 u tany ]

2
[« 9
o

|
(@]

2 ,cosasinacosIsinl (5.6)
utanqy

* (cosatany-sina) - 62(1+h)

" Values for the two small parameters must be calculated

and substituted into Eqs (5.1) - (56.6) for each planet

s a

studied. For the Earth, the value of the first small

parameter is approximately 1/800 and the value of the second

PR

small parameter is approximately 1/289 . To simplify the
following analysis, it is noted that the first small

parameter is approximately equal to one third of the second

Y - -
Yo T 4

small parameter. Hence, a new small parameter, €, is

defined for Earth entry analysis as \

AN

~ € = 5~ = 611/2= (52/3)1/2; € = e’ and €, = 3¢’ (5.7)

1@

The Equations of Motion for Earth Atmospheric Entry. To }

obtain the equations governing Earth atmospheric entry, the

first and second small parameters are replaced in the

equations of motion by € and a constant. The resulting

equations are used in the derivation of solutions for Earth X
entry:

C /2

aitanqcosa] - 46[3u(1+h)]1 cosl

dh = (1+h) 2

2
du - u 2uBe_h/E .[1+
€ siny

" tany

. 20 . 1
_ 662(1+h)2,cosas1n Isina (5.8) i
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dq a [d Cp, peh/€’ 3(1+h)]' /2
in = (1+h)[u - 1] - 65' 7 *cosg - 2€q[ a ] cosl
3
- 362(1+h)2'%—(tanqsinacosasinzl +1- sinQIsin2a) (5.9)
2
da _ 1 N E&.Be—h/e_ singsina
dh (1+h)tany CD €2 cosqysinqtanl

3(1+h)]1/%sina cosl

- 26[ u tanvy

(cosatanq - sina)

.2 2
. 362(1+h)2.s1n a cos‘I

Stans (5.10)

dh ~ CD e2 cosqsinqysinl

C ~h/e? . . 1/2 .
dan L Be singsina | 26[3(1:h)] -SIna(cosatanq—sina)

= tan7

< 2
+ 362(1+h)2 sin‘“a cosl

utany (5.11)
2
dI _ SL.Be—h/E.SinUCOSG + 26[3(1+h)]]/%cosasina,
dh Cp €2 cosqsiny u tany
* (cosatanq - sina) - 362(1+h)2_cosasinacosIsinI (5.12)

utan7y

It was previously seen that the latter three of the

above equations are coupled:

dfi _ tana dIl

dh ~ sinI dh (5.13)
da _ 1 tana dI
dh = (i+h)tany ~ tanI dh (5.14)

Eqs (5.8) - (5.12) describe the three-dimensional,

rotating planetary entry of Earth. However, the generic
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application of these equations to some of the other planets
is not lost. As an example, consider the problem of Mars
atmospheric entry. To make Egqs (5.1) - (5.6) applicable for
Mars entry analysis, the first and second small parameters
are calculated using Mars planetary constants. A new small
parameter, €, differing from Earth’s by only a constant is
then defined. For Mars, the first small parameter has a
value of approximately 1/350 . The second small parameter

is calculated from IAU defined constants to be approximately

1/218.
e - 1.1 I SN W
1 T~ pr - 350 € T Wg, T 218
The first small parameter is approximately equal to
three fifths of the second small parameter. Therefore, a

unique € is defined for Mars entry analysis:

¢ =157 = (€)= @e, /5"

or e = €2 and e = 25— (5.15)

To adjust the equations of motion for Martian
atmospheric entry, the new first and second small
parameters, as a function of € and a constant, are
substituted into Egs (5.1) - (5.6). Hence, the equations of
motion for Mars entry will differ from those for Earth entry

analysis by only a constant in each expression containing €.
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The Method of Matched Asymptotic Expansions

) 'ﬁa While many analytical methods have been applied to the
problem of planetary atmospheric entry, one method remains

) relatively unexploited. This is the method of matched

asymptotic expansions. From an entry vehicle’s viewpoint, a

planet’s atmosphere forms a boundary layer of density in

space. Aerodynamic forces on the vehicle change from

IR DS F

insignificant to dominating for a relatively small change in

altitude. A variety of methods, including composite

& -

expansions, multiple scales, and matched asymptotic

-
-

Y expansions, have been utilized to solve boundary value

problems. However, the method of matched asymptotic

oy

expansions is more "versitle" and "effective" than these

f other methods for both linear and nonlinear problems

AN
K
- composed of partial or ordinary differential equations

(Nayfeh, 1985:257,258). Past papers describe successful

Y applications of matched asymptotic expansions to solve

limited flight mechanics problems involving lifting

atmospheric entry. (Busemann and others:1976, Shi and

Lol i e

Pottsepp:1969, Shi:1971, Shi and others:1971, Willes and

others:1967). Most of these efforts used two-dimensional

equations of motion and assumed a spherical, non-rotating
Earth model except Busemann (Busemann and others, 1976),
where the three-dimensional equations of motion were

employed. In the following pages, the solution for the

-

LA -)-.'

dq/dh equation of motion for a rotating Earth is derived.

- To obtain this solution, the solutions for the non-rotating g
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Lol X

) equations of motion are first derived from the rotating
‘;-:_:\.’

el Ol i o™

Earth equations of motion. 4
5 For a boundary layer problem, the method of matched

asymptotic expansions gives two or more solutions, each

K valid in specific regions of the domain. These solutions

] have some overlap and can therefore be matched. The
matching conditions allow for the construction of a

K composite solution which is valid over the entire domain.

In this analysis, the entry problem is treated as a boundary

layer problem with a solution developed away from the

P d

boundary layer, valid for exo-atmospheric flight, and a
solution developed at the boundary layer, valid for

atmospheric flight. These two solutions to the equations of

YR A K L,

motion can be independently applied in their respective

‘A
.

X

domains. However, it is more convenient to have a solution

valid for the full range of entry conditions. Hence, the

FRERE NN

inner and outer solutions are matched and a composite

~

solution valid in both regimes is constructed.

Quter Expansions

The solution developed for the exo-atmospheric portion

of the domain is called the outer solution. This solution

j
4

is developed from asymptotic expansions of the equations of

T
ALl

motion using the small parameter, €. The outer solution

variables are denoted by the superscript "o". Straight-

.

oA’y

N}
L S

forward expansions of the outer solution variables are made

PN
F il B

(g

and are as follows:
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o
uo =u + € u, + € u  + A
{ Q;E_T 0 1 2 N
h g
o 1 2
| Q =q +e€q +€q *+
lf
: I1° =1 +€'I + €’ + .... (5.16)
b 0 1 2 A
]
° _ 1 2
fl _no + € 01 + € 02 + .
N ]
;: a® = a + € + €2a, + y
\ T oo a 2
K
o _ 1 2
“ T =7 tEe teT t .
1
| The solutions for lifting atmospheric entry of a non- .
. 4
! ‘
rotating planet are of order e . Adding the rotating planet
\. .
N model to the atmospheric entry problem causes additional s
‘ N
W P terms of order €' and €’ to appear in the expansions of the R
‘e
, equations of motion. These additional terms are .
'
b} relatively complex but require the solutions to be carried 3
: out to order €' in order to account for Coriolis
v
b ]
) acceleration on the flight vehicle. To also model the ~
b !
; usually insignificant Centripetal or Transport |
) acceleration, solutions would have to be carried out to ‘
| h
A order €. The solutions developed in this study are to
v

order €’ for Eqs (5.8), (5.10), (5.11), and (5.12) and to

order ¢! for Eq (5.9), the dq/dh equation of motion.

s 8 ® & 8 A
Calatarsard Lo

Solutions developed to order e! act as a correction to the
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hy
:
% i zero order solutions, a correction which accounts for the
! L58Y "
u - s
significant effects of a rotating planetary atmosphere. )
.
N In the following pages, the equations of motion are
R
R expanded for small € using the straight-forward expansions !
1
> given by Eq (5.16). Many of the common expressions that 1
P o N
[ n A
- contain € in the equations of motion are expanded in more }
o,
]
& detail in Appendix B.
b
‘5 The du/dh Outer Expansion. The outer expansion of the
Y,
, du/dh equation is given by
W
o 2 y
n du du du —[u +€u,_+€°u ] ;
o 0 , el , 2.1 _ 0 1 2 -
Q dh dh dh (1+h)
a
' BT cos?Y
® 2 2 _ 2 _ 0
- . 2(uo+eu1+e u2)Bexp( h/e®) siny €,
v, € [ 0 sin”q
) 0
’I
7, -
- ) CL €7,
b l + m—coso|tany, + —/—
- ) 0 cos27 J
0
-
- 2 1'/?
' - 4e[3(u + € u + €“u_)(1+h) (cosl - €I sinl )
o 0 1 2 J 0 1 0
r
Y - 652(1+h)2[(cosao— ealsinao)(sinao+ ealcosao)'
-
- e
’ ) . 1 1 2
- *(8in“I_+ 2€I sinI coslI )[ + ]] + 0(e“) :
0 1 0 0 tanqo sin27o
2
X du -u
. 0 0 0
-~ € terms: = (5.17)
. dh (1+h) |
.
¢ n
t
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The dI/dh Outer Expansion. The outer expansion of the

dI/dh equation is as follows:

dI dI dI C, n -h/e’
EEQ + GEHL + €2EEL = éi'ggzg——— sino(cosao - ealsinao)'
1 s1n70 cos,
. + € - e, ——2
cos7q, 1cos %, s1n'yo lsin27
0

[ [1 Y ] l /
+ 2e¢|3(1+h) |/— - e— (cosa_- €a, sina_ )
u, uo2 0 1 0

€9
. ; - 1 _ : .
(51nao+ ealcosao)[tan7 — ][(cosa0 ea151nao)
L 0 sin 7
( 0
[¢ =] - (e
any, + o )| - (s1na0 + ealcosao)
',0
u E',
~ 3¢ (1+h)2 [ 1 _ ][ 1 1 ],
u, u ? tan7° sin?
0 To
'(51na0+ ea1cosao)'(cosao— ea151na0)(51n10+ eIicosIO)'

. _ : 2
(cosIo eIls1nIo)]+ 0(e”)

€ terms:

84
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0 0
tan70

3 (cosaotanqo— s1nao) (5.20)

dI, [3(1+h)]‘/2cosa sinI
0

The di/dh Outer Expansion. It has been noted that the

dfl/dh equation is a function of the dI/dh equation as well
as a function of a and I. This dependence exists for the

outer expansions of these equations as well. From Eq (5.13)

dll _ tana_.dIl

dh = sinl dh

The outer expansion of the dfi/dh equation is

dn dn dan dI d1 dI
0 1 2 1 0 1 27
dh T €3n * € dn dgh Y €3 * ¢ an l
€ea cosl
1 1 0 2
tana, + , }[sinI - eIl—T—?——] + 0(e”)
cos‘a 0 sin“ 1
0 0
0 dﬂo dIo
€ terms: a5 - 0 since & - o (56.21)

dn tana dI
61 terms: = 0.
* dh s1nI dh

dan

3 (cosaotan7o - sinao) (5.22)

3(1+h)]1/zsina
0

tan70

The da/dh Outer Expansion. It has been noted that the

da/dh equation is a function of the dI/dh equation as well
as a function of a, h, 7, and I. This dependence exists for

the outer expansions of these equations as well. From
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Eq (5.14)

da _ 1 _ tana dI
dh = (1+h)tanq tanl dh

The outer expansion of the da/dh equation is

dao da 2da1 1 1 e,
a5 eahL + € 3p = {1+h) |ten - !
Yo sin %
dI dI dI el ca ]
0 1 2 1 1 1 9
- *€3n t € - tana + ———| + 0(e®)
dh dh dh }ltanIo sinQIoJ[ 0 C08200
da dI
0 . 0 _ 1 . 0o
€ terms: gg (1+h)tan7° since gy~ = 0 (5.23)
1 da, - tana dI1
€ terms: = - .
dh (1+h)sin2'70 ta.nI0 dh
dal B 71
dh (1+h)sin2'y0
(1+h) 1/QsinaosinI0
-2 o tan_tanl -(cosaotanqo— sinao) (5.24)
0 0 0

The dq/dh Outer Expansion. The outer expansion of the

dq/dh equation is as follows:

2
qo 2dq1 _ [q0+€q1+6 qz] 9 )
an * '-‘dh *€3R T T e (q,"+ 2eq))
C —h/e
1 Eu] ] L B
= - —1 -1 - 225 coso - 2e(q + €q, + €’q)-
[uo u 2] CD 62 qo q2
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’ N _ 1 €u 1]1/2 I -
Lk ¢?$ 3(1+h)[—;; - ;—;] (cos 0" 61151n o)
0

+ €u €7
)
" _ .2 2 3 2 [l N 1] 1
; 3e’ (1+h) (q0 + 3q0 eql) 3 ) tany, + ) }
v 0 u cos” q
:. 0 0 )
B
. . (s1nc:0 + €a, cosao) (cosct0 - €a, s1nao)'
'’
” L2 . _ . 2 . .
': (sin IO+ 2€IlslnIocosIo) + 1 (sin Io+ 2eIls1nIocosIO)
(¢

Ly 2 . 2
3 (sin a+ 25als1na0cosao)] + 0(e®) ‘
D -
\ 4
i 0 dqo 0

2
% [ %
e terms: g = (1+h)[ 5 1] (5.25)

k]

€ terms: dab - (1+h) - > + S

‘ 1 dq, %Y %2“1 2q1] . 9 [q02_ 1]

;_ u 0 (1+h) u,

¥,

% 3(1+h) 1/2

ii - 2qo " cosI0 (5.26)
I’ O

&

%)

Outer Expansion Solutions

,. €’ Terms. The complete set of €’ term outer expansion .
. differential equations, derived above, are "
‘; duo -u, E
. ah = (i+h) (5.17)
2 dI, ;
) dr = ) (5.19) !
- \
o dno n
o an - © (5.21)
¥ ,
y
Y .
U
) 87
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bl
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L4
’
Y
Al
g

A3 s a8 F 1

dao

1

) (1+h)tan70 (5.23)
dg,  q rq°

T - (1+h)[ a - 1] (5.25)

Solutions to this set of differential equations are
derived in Appendix C and are given below. Eq (5.30) is the

outer zero order € solution to the dq/dh equation of motion.

1/2 .
dI1 _ 2[3(1+h)] .cosaos1n10

I0 = 05 (5.27)
no = C4 (5.28)
u0(1+h) = 01 (5.29)
12 - 2(é+h) - C, (1+h)* (5.30)
qo 1
1 - C_/(1+h)
a = - cos ™! ! 7 + C3 or
(1 -c?c)H/?
1 2
_ _ 2 1/2
u =1+ cos(a,- ¢)[1 - ¢c%c] (5.31)
¢! Terms. The complete set of e! term outer expansion

differential equations, derived above, are

du -u

) 1 1/2
i 4[3u0(1+h)] - cosT, (5.18)

" (cosaotanqo - sinao) (5.20)

0 tan70
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A - dﬂ1 tanao dI1
A dh " sial, 3k (5.22)
X dn, 3(1+h)]1'?sina
! s TN s
% or an - 2 u tanqo(cosaotan7o 51nao)
o
da - tana, dI
| _ _ . (5.24)
. dh (1+h)sin2qo tanIo dh
i or
l
“ da - 1/2sina cosI
; dhl = i 2[§i%ihl] ‘~—€£%————Q(cosaotan70— sinao)
(1+h)sin % 0 Yo
hA
B
3 dg 2y 2q q 2
9 IR T B T Tt N I N . T
! dh (1+h) 2 u (1+h) | u
\ P 0 0 0
. e
- 1/2
A - 2q0[§£lihll cosl (5.26)
u 0
" 0
>
o
A complete solution to the dq/dh equation requires that
< the solutions to both Eqs (5.18) and (5.26) be found.
vy
. Solutions to these differential equations are derived in
Appendix C and are given below. Eqgs (5.32) and (5.33) are
.
! the solutions to the order € terms in the outer solutions of
the du/dh and dq/dh equations, respectively.
Cﬁ 1/2
N u = T+n) ~ 2(301 ) (1+h)60805 (5.32)
N
: Cl 3 Cl 4 Cl 4
~ q = - - - h'5—-0C exp[—C h] (5.33)
1 C1e (016)2 C16 20 16
K ‘
e
0
N 89 "
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\ 0 where Cls’ C14, and C16 are functions of C1 and 02, and 020

- is a constant of integration. Expressions for these ]

(

: constants are given in Appendix C.

‘|.

b Order € Outer Solution for the dgq/dh Equation of Motion.

& The order € outer solution for the cosine of the flight path '

r

- angle is given by the substitution of Egqs (5.30) and (5.33)

» into Eq (5.16).

. . ) ;
a =gq, +€q + 0() :

-1/2
o _ |[2(1+h) Cz(l+h)2

1T = |7 7C
1
ClS Cl4 Cl4
] - € - - h-gtt - ¢, exp[-C, A (5.34)
° C16 (016)2 C]6 20 16

Inner Expansions

The solution developed for the atmospheric portion of
the domain is called the inner solution. This solution is

developed from asymptotic expansions of the equations of

motion using the small parameter, €. The outer solution

-,

? variables are denoted by the superscript "i". Straight-
forward expansions of the inner solution variables are made

and are given below.

1
u = u  + u, + u_ +
0 € 1 ¢ 2
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N I =TI + €I + €1 4 ..., (5.35) !

: py 0 1 2 .
1 1 2
= + + +
Y] no € 0] € 02
i 2
= + + € +
a a, € a, a,
i 1 2
= + + € +
W
. b))
- To derive the inner expansions, a new independent 3

variable is required so as to force the equations of motion
L to focus on the boundary layer region. ¢, a magnified

version of h, is the inner expansion independent variable.

LG,

Hence, ¢ is defined as the magnified non-dimensional

N altitude and it is given by

WS ol"ah

X £ =h/e’ or h=¢€’¢ (5.36)

Therefore == = € and by the chain rule,

Pl
L PP e Jel b )

| g S0 N AN BRI e}
A b WF X e N Ny e

dy _ dy.dh _ _2dy
dé ~ dh de T € dh (5.37)

The equations of motion for Earth atmospheric entry are
now transformed from functions of h, represented by Egs
(5.8) - (5.12), to functions of the magnified non-

dimensional altitude, £.

i 2 1 C .
%E & ; _ 2u Be 1 + aktan71coso] (5.38)
3 (1+e° €) sin7 D

. 1/2 . i, 2.1 .
_ 463[3u1(1 . 525)] cosTi- 664(1+€2£)2,cosa sin g sina
tanvy
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1
3 ' i 2 i [_i? c 2 \]1/2 :
! v %9 = ——5—9——[97 - 1] - ELBe—gcosa - 263qi éiliiTﬁl cosI? :
3 (1+52§) ut D ut J
4 i’ : : : .
N - 364(1+€2£)2‘9T (tany'sina’cosa’sin®I?
P I
4
N + 1 - sin’I'sin’a’ (5.39)
\
ES da’ _ e’ _ E&'Be—g' sinosina’
' d¢ (1+£2§)tan71 CD cos'ylsin'yltanl1
, 2 1/2 . i i . . .
i _ 263[3§1+5i§)] .5ina c?sI (cosaltan71 — sinal)
! u tanvy
\
\ . -
. 2 i 2 i
- + 3¢’ (1+€” ¢)? BRI O3 I (5.40)
) u” tanvy
5
. i C N S | 2 1/2
T dn” _ L.g,-§._sino sina’ 5.3 |3(1+€7§) & (5.41)
® d¢ CD i . 1. L1 i
. cosY siny sinl u
o
. sinai i i i 4 2 .N\2 sinzaicosIi
o =———+(cosa tany - sina’) + 3¢ (1+€“§) " —F—
. i i i
™, tan7y u tan7vy
2 dr’ ‘L -€ sinacosai 3 3g1+52§g 1/2 i
N ¥z = = 'Be »—77T"""— + 2¢ : cosa” *
5 d§ CD i 1 i
: cosy siny u
3 sina® i, i i
. (B2 (cosa tany® - sina®)
o tany
»*,
- i i > S |
3 _ 364(1+€2§)2,cosa 51?a cogI sinl (5.42)
u” tany
.
4
y The latter three of the above equations are coupled.
: dn’ _ tana' dr’
an” _ _.dI (5.43)
5 oot d¢ sinI® d¢
NG
»
»
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Lk k2

A

', .. i 2

R i Swas e tane 3% (5-44)
: (1+€” €) tany tanl

A In the following pages, these equations of motion are P
'\ ‘
LY

) expanded for small € using the straight-forward expansions

[
: of Eq (5.35). Many of the common expressions that contain €
X are expanded in detail in Appendix B.

7.

? The du/df Equation Expansion. The inner expansion of

v n

the du/dh equation is given by

s

< [ 2 ]

- duo . Edu1 . 62du1 L2 u, +€u +eu,

W, d d d -
»n 6 g E (1+€2 6)

~ cos

. - 2(u +eu, +€’ u, )Be €. - €7 ——-29— :

L 1 51n7 1.

R sin®q,

>

N c

s. .. €7

s o . _L S N

-~ ‘ (1 + CDcosa(tanqo + ) }]

R cos” q,
ff 3(u +eu1+e u, )(1+e £) 1/

o - 4¢3 (cosI - €¢I sinl )

1 1 0

-

- - 664(1+62§)2[(cosa0— ealsinao)(sinao+ ealcosao)'

- €

2 ‘(sin’I + 2¢3T sinI cosI )[ 1 - ! ] + 0(e?)

- 0 1 0 0’ ltany .

- 0 sin” v

- 0

) This immediately reduces to
': d d
N u u cosY
L R § 2y - - -€. -

3 T + edf + 0(e) 2(u +eu, )Be [s1n7 €Y,

N sinq,

2, o

., ’.r_:f
),
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s S&,cosa CL.coso CL, €7, coso 2
* T, cosy, T €M T, siny. T T 7| * 0
D To D To D sin7ocos %
du C
e’ terms: E_g = - 2u Be—§° L + _L.cosg (5.45)
'3 0 siny, CD cosy,
du cosY C
e! terms: 3~L = 2uoBe—§°[71 20 + 716£'%g§g— (6.46)
3 sin’ny D ©°57,
C v, coso C
- EL- 1 - ] - 2u1Be_§'[s-1 + EL.COSU ] + 0(52)
D siny, cos % 107, D ©°%7,
The dI/df§ Equation Expansion. The inner expansion of
the dI/df equation is
dI dI C
EEQ + GEEL + 0(52) = Ei'Be_ésina(cosao - ealsinao)'
* 1 sin70 1 cosq,
' cosy, * e’71C 2 siny, T n?
os” 7, sin® 1y,

1/2

3 2 1 Yy . .

+ 2€°|3(1 + €°€) ~ " €5 (cosao - ea151nao)
0 u

[taiqo L ][[(cosao— Ealsinao)‘

-(sinao + €ea, cosa,_ ) )
sin
Yo

1 0

6'71

2

'[tan70 + oin’q
0

— 1 +
] (s1na0 ealcosao)]

€7, ].

u
o[ - B -
0 u sin®q,

ks,
tan7
o 0

'(sinao'+ ea1cosao)(cosa - €a sinao)‘

0 1
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. . . 2
ﬁgy '(s1nIo + eIlcosIo)(cosIo - eIis1nIo)] + 0(e)
This equation reduces to
dI0 dI1 0 CL -
Fra + GEE_ + 0(e”) = EBJBe sino(cosao - ealsinao)'
sinqy cosqy
co; T 2 0][sii - 671___?_2] * 0(62)
To cos® To sin %
dI C cosa
0 oo _ Lg-€ing—W0 90
€ terms: aE - CD Be %sino cos7osin70 (5.47)
e! terms: (5.48)
dI C sina cosa cosa
1 Lo -€._. 0 0 0
97 = g 'Be S'sino|-a -+ 4 —— -y ——
B d¢ CD 1 cosy sinY, 1c°527o ]sin27o
{4

The dfi/dé Equation Expansion. It has been noted that

the dfl/d§ equation is a function of the dI/df equation as
well as a function of a and I. This dependence exists for

the inner expansions of these equations as well. 4

dni _ tanai.gli
d¢ sinI? d¢

The inner expansion of the dfi/df equation is

dn dn dn dI dI dI
=2 4 el 4+ 2L = —0 4 el 4 ez——L .
d¢§ d¢ d§ d§ d§ d§
ca cos]1
1 1 0 2
‘{tana, + - - €l ——————] + 0(e®)
0 cosan][SInIo ]sinzIo
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gg? With substitutions, the dfl/df equation expansion becomes
¢ )
dﬂo dﬂ1 2dn] C €
aE + GHE— + € ac = ¢_'Be 'sina(cosao - eajsinao)'
X
[ 1 sin70 1 cosy,
cos * e 2 sin - €, 2 .
7 cos”q, To sin %
; €a cosI0 0
> tana_ + ) S T eI]—T—;—— + 0(e”)
cos’ a sin‘ I
0 0
df C singsina
2 €’ terms: a—g = —L'Be—g' : - (5.49)
. I3 Cp cosqos1nqos1nIo
- dn C sing sina
- €' terms: EEL = EL—'Be—Esina['y1 ; 0 -1, 0
i D cos '7051nI0 sin '1081nIo
o .
. .. sina_cosl cosa
Ve -1 0 0 a, — 0 (5.50)
- 1 . .2 cosy sinqy sinl
4 cosy,siny, sin Io 0 0 0
h) The da/d¢ Equation Expansion. It has been noted that
the da/d€ equation is a function of the dI/df equation as
4
: well as a function of a, €, 79, and I. This dependence
: exists for the outer expansions of these equations as well.
From Eq (5.40)
;C dai _ 1 B t,a,nai.dIi
E d¢ (1+62§)tan71 tanI® d¢
R The inner expansion of the da/df equation is
L
¥
N
' da .\ eda1 . eQdal ) €2 1 €T
) d¢ d§ d§ (1+€2§) tany sin210
Iﬁ-.
, \:\?'
»
t
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[dI0 . edIl . 62dI [ 1 ) 511
d§ d¢ d§ tanIo sin210
eal 2
|tana, + ———| + 0(e®)
cos’a

0

With substitution, the following expression is obtained:

da, . eda1 . €2da1 ) €2 l 1€ ]
dé d§ d¢ (1+€2§) tany sin270
C sinqy
L.Be€si ; 0
- w-'Be %sino(cosa_- €a,  sina )[ + €9 ]'
CD 0 1 07 |cosq, ! os? 7,
1 cos7o] 1 611 }
- - € _ .
|51, 1sinz'yo tanIo sin2I0
€a
tana, -+ ———%——] + 0(62)
! cos‘a
0
da C sinosina
0 .o _ _ L. g.-€. 0
€ terms: d§¢ CD Be ta.nIosin'yocosI0 (5.51)
da C sina sina
€ terms: g = - c—L'Be_gs“‘”['rl e T Wi
3 D cos 7otanIO sin 7otanIo
- I, 7% > ay :osa‘,lanl ] (5.52)
cos7osinqosin Io cosq, 8107, 0

The dq/d¢ Equation Expansion. The outer expansion of

the dq/d§ equation is

do, da, _ [areq+c’a] |
TR S S o A (LRELRL)
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LY 2 2] 1 c Be “coso 2¢€ (qo + €q + € q,l)
0 u, D
)
" [ 0 1 €u, 1/2 .
i *13(1+€ 5)[—;; - u—2] (COSIo - eIls1nIo)
s ; 0

€
K - 364(1+€2§)2(q03+ 3q026q1)[%; - iﬂL][[tanyo + ——ZL—— .

2 2
! u, cos® 1y,
i
)
. '(51na0+ ealcosao)(cosa0 - 60151na0)°
4 Sy 2 . _ . 2 . ]
3 (sin Io+251151nIocosIo) + 1 (sin IO+ 261151n10cosIo)
h
L2 . ?
f (sin a,+ 2eals1naocosao)} + 0(e®)
-"-.i:
= d C
A -
W . €’ terms: agg = - EL'Be gcosa (56.53)
3 D

'2 ' qu
> € terms: EE— =0 (5.54)
v,
o
2
" Inner Expansion Solutions
e
o
’ €’ Terms. The complete set of €’ term inner expansion

differential equations, derived above, are as follows:

du C

EEQ = - 2uoBe_§' si; + 6L°§§§g (5.45)
r '70 D 70
A dI C i
o) sinocosa
: Tl coBe b e (5.47)
% D %o To
A

o8
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dﬂo CL -€ sinasina0

dé = EB.Be 'cosqosinqosinlo (5.49)
da C sinosina

o _ _ L.g. €. 0

d¢ Cp Be tanIosin70c0510 (5.51)
d C

agg = - éi'Be gcosa (5.53)

Solutions to this set of differential equations are
derived in Appendix D and are given below. Eq (56.55) is the

inner zero order € solution to the dq/dh equation of motion.

C

L.pe~¢

= =—'Be Scoso + K (5.55)

9 CD 1
-2Cy

_ 2 D'o
Yo ° Kaqo exP[CLcosa] (5.56)
51na051n10 = s1nK4 (6.57)
cosa = costcos(K5 - ﬂo) (5.58)
cosl = cosk cos[tanO'log[tan(1 + Z(—)—)] + K ] (5.59)

0 4 4 2 6

e! Terms. The complete set of €' term inner expansion
differential equations, derived above, are as follows:
du cosq C C 7, coso
d51 - 2uoBe_§' gy 20 * 71@_&.22:0 - C_L 1 2 ]

sin” v D Yo D siny cos®q,
- 2u B -¢.[_a . JL.coss + 0(e?) (5.46)
u, e sinqo CD cosy, € )

A T A T e T e

Sl Sl el Sl S8 5 L S YA Vol ol Vel e Bl Gl Tl vl Sol Gl il Nl Gl Sl God By WWWWWW‘W“‘\"WWWW]




LIPS

0

cosa cosa
—— + 7,
alcosqos1n7o 1

0 0

2 . 2
cOs 5
T T

dﬂ1 tanao dI1
d¢ sinIo d¢

sin sin
aO aO

cos 'yosinI0 sinzqosinIo

sina cosI0 cosa

0 al 0
cos?Y siny sinl
70 70 0

1 . s 2
cosq, sin7y Sin
70 70 I0

sina sina
0 0

2 1 .2
cos 7OtanIo sin 7otanIo

sina cosa
0 s @ 0

1 -
cosYy s
7,51107, tanIo

! cosv sin sin21
70 70 0

(5.54)

A complete solution to the dq/dh equation requires that
only the solution to Eq (5.54) be found from this set of
equations. The solution to Eq (5.54) is trivial; the

constant of integration is defined as K7.

ql = K?
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Order € Inner Solution for the dq/dh Equation of Motion.

The order € inner solution to the cosine of the flight path
angle is given by the substitution of Eqs (5.55) and (5.80)

into Eq (5.35).

q' = q + eq + 0(e?) (5.35)
. C
q' = EL'Be—gcosa + K + €K (56.61)
D 1 7
At this point, the inner and outer solutions to the
equations of motion have been derived to order €’. These

are the solutions to the atmospheric entry for a non-
rotating Earth. In addition, the inner and outer solutions
to the dq/dh equation of motion have been derived to order
€. These latter two solutions include the Coriolis
acceleration on the flight vehicle and therefore account for
the significant effects of a rotating Earth. In order to
create composite solutions valid for both the inner and

outer regions, matching is performed.

Matching Zero Order € Solutions

One of the fundamental rules of the technique of matched
asymptotic expansions is that the outer expansion of the
inner expansion solution is equal to the inner expansion of
the outer expansion solution (Nayfeh, 1981:277,278). This
condition allows matching of the solutions, reducing the

number of unknowns in the solution equations. On the
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following pages the inner expansions are taken of the €’

outer expansion solutions. Next, the outer expansions are

taken of the €’ inner expansion solutions. Finally, the
derived expansions of expansions are matched and the inner
solution constants of integration are expressed in terms of

the outer solution constants of integration.

Inner Expansions of Order e’ Outer Expansion Solutions.

From Eq (5.29), the one term outer expansion for u is

o}

(u,) " = C /(1+h)

Noting that £ = h/e2 or h = 62§ and rewriting this

equation in terms of the inner variable, £, gives

(o)

(u,)° = C /(1+€’¢)

Expanding for small € gives the inner expansion of the

outer expansion of the zero order € term for u.

[(uo)°]i - ¢ (5.62)

From Eq (5.30), the one term outer expansion for q is

(o}

1/2
(a,)° = c1/[2(1 +h) - CC (1+ h)Q]]

Rewriting this equation in terms of the inner variable

o

1/2
(a,) [Cl/[Z(l +€e'¢) - cc (14 ezg)z]}
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Expanding for small € gives the inner expansion of the outer

expansion of the zero order € term for q.

- i [ 1/2
% [(qo)o] Cl/[z + 2 - €,C - 010264£ - 20102625]]

> i - 1/2

n [ °] - C/(2—CC)] (5.63)
N (a5) B ! 172 :
~.
'\v:

= From Eq (5.28), the one term outer expansion for 1 is

D,

» o
‘w: (ﬂo) = C4
o
N Rewriting this equation in terms of the inner variable
.{ simply gives

L]
0 o

~ (00) - C4
)| .

N Expanding for small € gives the inner expansion of the outer
N expansion of the zero order € term for {].

N
1\ o i

| [@)°] =, (5.64)
Y

.

. From Eq (5.27), the one term outer expansion for I is

.n

e

)

¢ (Io) = Cb
[~

} Rewriting this equation in terms of the inner variable

- simply gives

. o

’

* (I,)" = ¢C
[

.'l L
= 7
-

v

,I
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", Expanding for small € gives the inner expansion of the outer

expansion of the zero order € term for I.

wy
: [(10) ] - ¢, (5.65) 7
" From Eq (5.31), the one term outer expansion for a is
93 »
&)
- o \ 1 - C1/(1+h)
' a = - cos +
: (ay) (1_020)1/2 3
1 2

"

Rewriting this equation in terms of the inner variable: !
N 3
A . [1 - C /(1+€%¢€)

(ao)o = - cos ’[ ! ; 772 + C3
¥ a-¢7¢)
3 Expanding for small € gives the inner expansion of the outer

P expansion of the zero order ¢ term for a. A
: :
- o011 . 1 - C1 4
N [(ao) ] = - cos ; 72 + 03 (5.66) )
) (1 -C.“C) .
N 1 2
2 )
s Outer Expansions of the €’ Inner Expansion Solutions. .
J From Eq (5.55), the one term inner expansion for q is X
4 . C
i _ L.p.¢€

(qo) = CD Be “coso + K1 .

Noting that £ = h/e2 or h = 62§ and rewriting this
: equation in terms of the outer variable, h, gives L
. c :
~ . 2 .
3 (qo)l = EL’Be—h/e-cosa + K g

D 1

. e
n "
N
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Expanding for small € gives the outer expansion of the inner

expansion of the zero order € term for q.

[(qo)i]o =K (5.67)

1

.40
and hence [(70)1] = cos—lK1 (5.68)

From Eq (5.56), the one term inner expansion for u is

. s 2 -27
(u0)1 = K3 [(%)1] exP[cosaCi/CD]

Rewritten in terms of the outer variable

. .2 -2C coshl( )i
i i D %
(uo) - KS[(qO) ] exp[ CLcoso ]
Expanding for small € gives the outer expansion of the inner

expansion solution of the zero order € term for u.

—2cos-1K1
(5.69)

)
] -t s
0 371 cosaCL/CD
From Eq (5.59), the one term inner expansion for I is

(Io):'l = cos !

cosk, cos [ tano - 1og[tan[Z - (70)1” . Ke]]

Rewritten in terms of the outer variable

~
bt
St
-
L

cos—1‘cosK4c05[tana‘log[tan[% + (70)1]] + Kﬁ]}




Expanding for small € gives the outer expansion of the

expansion of the zero order € term for q.

[(Io)i]o= cos” !

cosK4cos[tanU'

gl - 5] k]|

From Eq (5.57), the one term inner expansion for a is

0

: L sinK4
(a. )" = sin [ ]

. i
51n(10)

Rewritten in terms of the outer variable:

0

. sinkK
(a )1 = sin-l[ 4 ]

sin(Io)i
Expanding for small € gives the outer expansion of the
expansion of the zero order € term for a.

o

[(ao)i] = sin_l[sian/sin[(Io)i]o}

.40
where [(Io)l] was given by Eq (5.65)

A )

From Eq (5.58), the one term inner expansion for {1 is

LU AN O %

!, i \ cos(ao)1
N _ -
N (ﬂo) = -cos [—ESEK_——] + K,
~ 4
~
h Y
- . . :
AN Rewritten in terms of the outer variable:
»
’ ' . -
Vol
" t N
', A
-
-~
N 106
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cos(ao)1
] -+
cosK4 5

(ﬂo)i = —cos_l[

Expanding for small € gives the outer expansion of the inner

expansion of the zero order € term for (1.
.40 _ .40
[(00)1] = -cos 1[cos[(ao)l] /cosK4] + K5 (6.72)

., 0
where [(ao)l] was given by Eqg (5.66)

€’ Term Matching. As previously discussed, the outer

expansion of the inner expansion solution is equal to the
inner expansion of the outer expansion solution.

Mathematically, ﬁ

e o

[(x)i] = [(x)o]i (5.73)

This is sometimes expressed (Lagerstrom, 1972:90) as

limout[limin x] limin[limout x]

where x = xo + ex1 + 62x2 + ...

The expressions derived for the outer expansion of the inner

expansion solution and for the inner expansion of the outer

expansion solution can be matched for q, u, a, I, and fI. )

’

Matching the Speed Ratio Equations. From Eq (5.73) :

¢

-:‘

.40 i 2

1 _ o L
[(“o) ] - [(uo) ]
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Therefore, from Egqs (5.62) and (5.69)

-1
0 -2cos K1
C1 = Kal(l exp .aD-SG'—CL_/FI; (56.74)
Matching the Flight Path Angle Equations.
.10 i
o
(@] = [(a°]
Setting Eq (5.63) equal to Eq (5.57) gives
1/2
K = [c /(- cc )] (5.75)
1 1 1 2
Matching the Inclination Angle Equations.
.40 i
i _ )
(@] =[]
Equating Egs (5.65) and (5.70) gives
C5 = cos_l[cosK4cos[tana'
-1
cos K1
'log[tan[% + ———5———]] + KG]] (5.76)
Matching the Argument of Latitude at Epoch
Equations.
.40 i
1 _ (o}
[(ao) ] - [(ao) ]
Equating Eqs (5.66) and (5.71) gives
108
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Y
'J h’.' - 1 - C _ : 90 '
J A - cos ! ! + C. = sin !|sinkK /sin[(I )1] :
(1 - c 2c )1/2 3 4 0
N 1 2
N
\ 11° o i
[ and since  [(I)'] = [@)°] = then
N . { 1-C ] . [sinK4} :
- - cos + C = 8in : (6.77)
o 2 1/2 3 5inC
: (1 - C1 CQ) 5
)
Matching the Longitude of the Ascending Node
. (
N Equations. :
I: ¢
- .40 i !
i o !
[@,)*] = [@,)>°]
Setting Eq (5.64) equal to Eq (5.72) )
0y C = —cos_l(cos[(a )i]o/cosK + K
o 4 0 4 5
) [ 1-C¢ l ,
C = -cos |cos|- cos [ '
4 S| a - c’c, y1/2
+ 03]/COSK4J + K5 (5.78) E
The inner expansion solutions, valid in the domain of h ,
near the boundary layer where aerodynamic forces are
dominate, have been matched with the outer expansion !
solutions, valid in the domain of h away from the boundary
layer. The results of the matchings are used to reduce the :
number of unknowns in the solution equations. The constants
: o of the outer expansions are determined first, often from X
- ’&’., \
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initial conditions, in a planetary entry problem. Hence, it
is desirable to express the constants of the inner
expansions, K, in terms of the constants of the outer

expansions, C. From Eq (5.75)

1/2
K = [c, /- cc)] (5.79)

From Eqs (5.74) and (5.75)

—2cos ! [C1 /(2 - C1 02 )] 12

cosa‘CL/CD

K = (2 - C]C2)exp (5.80)

3

From Eq (5.77)

1-¢C€
K = sin ![sinC -sin|- cos™! ! + C (5.81)
4 5 (1 3

2 1/2
_C1 Cz)
From Eq (5.78)
K =C + cos_l.cos[— cos—l[ - Cl l
5 4 _ (1 - ¢ %c )1/2
1 2
+ Cs]/cosK4W (5.82)

From Eq (5.76)

N cosC5
K = cos ' |—2>
6 cosK4
i cos_iK1
- tano-log tan[z + ———5———] (5.83)
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n With Egs (5.79) - (5.83) the inner solutions can be

written in terms of the constants, C.

Zero Order € Solutions to the Equations of Motion

A solution good for the entire range of h is desired for
the convenience of not having to apply the two sets of
solutions to one entry problem. The composite solution,
valid everywhere in the domain, combines the inner and outer
solutions that were valid only in certain overlapping
regions of the non-dimensional altitude domain. This
composite solution is given in the following equation by the

method of matched asymptotic expansions.

c o i 01l o i 11°

y =y +y—[(y)] =Y+y-[(y)] (5.84)
The composite solution is therefore given by the sum of

the irner and outer solutions and the difference between

this result and any expression common to both the inner and

outer solutions. In addition, the inner expansion of the

composite solution is equal to the inner solution, and the

outer expansion of the composite solution is equal to the

outer solution. Mathematically,

[(y)“]i -y e [ = 0 (5.85)

Speed Ratio Composite Solution.

W€ = ()° + (u)i - [(U)o]i = (w)° + (“)i - [(u)i]o

111
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e Combining Egqs (5.28), (5.56), and (5.62) gives the composite

solution for the speed ratio.

u® = CI[TT%HT - 1] + Ka[gi'Be-h/e%cosa + Kl]z'

C 2 C
- exp|-2cos ! —L'Be_h/€°cosa + K /—&cosa (5.86)
CD 1 CD

Flight Path Angle Composite Solution.

(o}

- @+ @ - [@] = @+ @ - [@]

Combining Egqs (5.30), (5.55), and (5.67) gives a composite

solution for the cosine of the flight path angle.

1/2
. a® = |c /[2a+n) - ¢C (1+h)2]]
'} 1 1 2
C 2
+ GL'Be—h/e'cosa (5.87)
D
Inclination Angle Composite Solution.
o i o i o i 11°
- @M%+ - [M°] = @+ @ - [}
Combining Eqs (5.27), (5.59), and (5.70) gives a composite
solution for the orbital inclination angle.
I°€ = cos_l[coqucos[tana' (5.88)
C 2
'log[tan % + %cos—’[éiBe*h/e'coso + K]]}] + Kﬁl]
=
112
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R Longitude of the Ascending Node Composite Solution.

o]

a® = @° + (@ - [(a)°]i = @°+ @' - [@F]

Combining Eqs (5.31), (5.59), and (5.68) gives a composite

solution for the longitude of the ascending node.

c o) [
a = —COs

1 - C /(1+h) }
1 -cc)H/?

N

+ sin—l[sinK4/cos_1[cosK4cos tana'log[tan

1 CL —h/e2 ]
+ 5 E—Be *coso + K] + K6

D J
—1[ 1 -6
+ cos (5.89)
. a2 1/2
(, (1 C1 Cz) |
Argument of Latitude at Epoch Composite Solution.
c o . o i ° . )
0 = @° + @t - [m°] = @+ @ - @]
Combining Eqs (5.28), (5.58), and (5.72) gives a composite
solution for the argument of latitude at epoch.
cos(ai)
c
i = -cos L————-—J +
cosK4 5
c -1 . =10 . . c
- = K5 - cos [cos[51n [51nK4/51n(I )]]/coqu} (5.90)
For Eqs (5.86) - (5.90), the K.1 constants are given by
ég. Eqgs (5.79) - (5.83). Hence, solutions to the five equations
113
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of motion have been developed as functions of Cl' CQ, Ca,

C and CS.

4 ?

Matching € Order Solutions to the dgq/dh Equation of Motion

An inner expansion of the outer expansion solution is
undertaken as well as an outer expansion of the inner
expansion solution. Matching is performed by equating these
expansions of expansion solutions.

Inner Expansion of the Outer Expansion Solution. The

outer expansion solution for the dq/dh equation of motion

was derived to order € and given by Eq (5.34).

-1 /2
q° _ [2(1+h) C2(1+h)2

C
1
013 C14 C14
- € - - - h=——-C exp[—C h]
C15 (016)2 C16 20 16

Noting that § = h/e2 and h = 62§ and rewriting the

above equation in terms of the inner variable, §, gives

a 1/2
(@)" = Cl/[2(1 + elg) - cc, (1+ Jg)?]]

-013 C14 2 C14 2
- € - - €€ -C exp[—C € {] (5.91)
C16 (C )2 C16 20 16

16

Expanding for small € gives the inner expansion of the outer

expansion solution to order €.
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) b 1/2
g [(@°] = [c,/2 - c,c)]
C C
- € 013 - 14 , - C,, (5.92)
16 (CIG)
Outer Expansion of the Inner Expansion Solution. The
inner expansion solution for the dq/dh equation of motion 5
~
was derived to order € and given by Eq (5.61). N
-
. C
(@) = EL'Be~§cosa + K + €K
D 1 7

Rewriting this equation in terms of the outer variable,

h, and expanding for small € gives the outer expansion of »
-
the inner expansion solution for q. ;
P .40 i
(s [(q)l] =K o+ ek (5.93)
Matching. The outer expansion of the inner expansion ?
solution is equated to the inner expansion of the outer 2
solution expansion. 3
P
. v
.0 i
o .
(@] = [@°] g
"
1/2 C13 C14 -
K + eK = [c /2-¢ccH] - e - _c R
] / 1 172 C1e (c )2 20 .
16 L
-.
Subtracting Eq (5.79) from this expression and dividing by €
gives
A
N‘
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€ Order Composite Solution to the dq/dh Equation of Motion

The composite solution to the dq/dh equation can be

easily constructed:

(o}
[

= @° + @' - [@] =@+ @ - [(q)°]-i

1/2 C )

< = |c /[2(1+h) -ccC (1+h)2]] + L.peTh/€l ogp

1 12 CD

Cl3 Cl4 Cl4

- € - - h-=— -C exp[—C h] (5.95)
C16 (C )2 C16 20 16
16

where C]3, 014, and C16 are given by the following relations

derived in Appendix C:

1 l 3 ]’/2 3C,
C.. = 2cos(C. ) |an— - 1| |o—— (5.96)
13 5 10“ C1C11 (01)2(011)3/2
ac.c c”] [ 3 ]1/2
C = + 2cos(C_)|1 - 3 . (5.97)
14 (CI)Q (C”)s/z 5 c c3c 3

11 1 11

2 1 ‘
C = + -1 (598)
16 C. (C )1/2 C1C11
1711
where
= [2_ _ - [ _
Cn B [C Cz] and Cl? - [C Cz] (5.99)
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and where C6 and 020 are constants of integration.

Hence, a solution for q has been found as a function of two
constants of integration, 06 and CQO, and the constants Cls’

Cld’ and Cle’ which are dependent upon C1 and CQ.

Summar
For convenience, a summation of the derivation results

using matched asymptotic expansions are presented.

Solutions to the Non-Rotating Earth Equations of Motion.

Treatment of atmospheric entry as a boundary layer
problem allowed for the application of the method of matched
asymptotic expansions. In this section, the rotating Earth
equations of motion were asymptotically expanded using a
small parameter that is a function of the planet’s inverse
atmospheric scale height, radius, and rotation rate. Zero
order solutions to these equations were derived. These
solutions were of two types, inner solutions, valid close to
the Earth, and outer solutions, valid far from the Earth.
The domains of these two sets of solutions overlapped.
Hence, direct matchings of the expansions of the expansion
solutions were accomplished. This produced equations that

related the inner solution constants, Ki’ to the outer
solution constants, Ci' Composite solutions, valid for the

entire atmospheric entry domain of non-dimensional altitude,
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were constructed using these relations.

of motion for three-dimensional,

The outer solutions were given by

uo(1+

1

C
5

C
4

h)

=C
1

= 2010 ¢ (1+4n)°

1

1 - C]/(1+h)
(1 _¢c?c )1/2} +Cs
12

The inner solutions were given by

C
L.ge ¢
= =—'Be Scosg + K
% CD 1
-2Cy
» _ 2 Do
8 Yo T Kaqo exp CLcosa}
: s:n0051n10 = 51nK4
9 - -
. cosa, = cosK4cos(K5 ﬂo)
cosl = cosk cos[tana'lo [tan(l + ZQ)] + K ]
. 0o 4 € 4 " 2 6
A
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or

_ _ _ 2 1/2
u =1 + cos(ao Cs)[l C1 CQ]

These composite

(5.

(5.

(5.

(5

(5

(5.

(5.

(5.

(5.

(5

solutions are solutions to the non-rotating Earth equations

lifting atmospheric entry.

27)

28)

29)

.30)

.31)

55)

56)

57)

58)

.59)
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P
)
, Matching the expansions of these solution sets produced the :
N -\.- -
N e following relationships between the outer solution .
>, constants, Ci’ and the inner solution constants, Ki' o
e .
)
1/2 .
X K, = [ci/(z - clcz)] (5.79) ,
_ 1/2
~2cos [cl/(z - ¢, 02)]
’ K3 = (2 - Clcz)exp coso‘CL/CD (5.80)
: ]
L . - 1-C p
vy K4 = sin sinCs'sin - cos s 73 + 03 (5.81) ‘
- (1 -C°C) .
v 1 2 )
o -1 1 - ¢ ]
. Kb = 04 + cos cos|- cos ” /2 .
- { (1 -¢C°C) b
9 12 K
.' -
Y + C ]/cosK (5.82)
” 3 4
' ]
ﬂ _ cost
. KG - cos coqu
X -1
! - cos K1
v - tano-log tan[z + ———5———] (5.83)
!

. The equations given above are for the three-dimensional l
- atmospheric entry of a non-rotating Earth. These solutions ;
were derived from zero order terms in the expansions of the
: rotating Earth equations of motion. .
‘ The composite solutions for the three-dimensional R

atmospheric entry of a non-rotating Earth were given by ’
' .-:::- .
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e c
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C 2 2
- 1 L. p.-h/€’ )
C][(1+h) 1] + Ks[CD Be cosg + Kl]
C 2 C
'exp[—Zcos_1 EL'Be_h/E'cosa + K ]/akcoso] (5.86)
D '1"%p
1/2
_ _ 2
- [Cl/[2(1+h) C,C, (1+h) ]}
C 2
+ GL'Be_h/e'coso (5.87)
D
= cos_1[cosK4cos[tana' (5.88)
C 2
'log[tan % + %cos—I[aiBe_h/e'cosa + Kl]]] + KB]]
_1rl - C, /(1+h)
- Tces ; 2~ 172
L1 - ¢ %c)

+ sin’ ! sinK4/cos_][cosK4cos tana'log[tan %
C 2 ]
+ %cos_1 ELBe_h/e‘cosa + K + K
D 1j 6
-1 1 -6
+ cos PR 7 )1/2 (5.89)
1 2
= K5 - cos—]lcos[sin—i[sinK4/sin(Ic)]]/cosK4] (5.80)

Solution to the dq/dh Rotating Earth Equation of Motion.

To accurately mcdel Earth atmospheric entry, a solution

the dgq/dh equation that included rotating Earth effects
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. was required. This solution was derived in the form of ~
N
- order € inner and outer solutions to the asymptotically ’
’
expanded dq/dh equation of motion for a rotating Earth. }

Matching was performed between these solutions and a
composite solution to the dq/dh equation of motion for the i

three-dimensional atmospheric entry of a rotating Earth was

constructed. ﬂ:
o~
The outer solution to the rotating Earth dq/dh equation -~

)
' of motion was given by :ﬁ
’ ~
1-1/2 o~

qo = _2_£é_+hl - ()2 (1+h)2J ::‘

1 ! )
C‘] 3 C] 4 Cl 4 ,
- €|¢ - , h'a—— - 2oexp[—th] (5.34) a
16 (C. ) 16 e
. 16 7

e J
The inner solution to the rotating Earth dq/dh equation of e
motion was given by .

i L. e )
Q" = g "Be “coss + K+ €K (5.61) e
D 1 7 N
-
|..~
The composite soclution to the dgq/dh equation of motion is of :i
. order € and hence includes Earth rotational terms. The '
s
composite solution to the dg/dh equation of motion for the ;
three-dimensional atmospheric entry of a rotating Earth was ,g
. given by L'
'~
c Y A T /€ B
q = {C /[2(1+h) - C. C_(1+h) ] + ="Be *coso "
’ 1 12 CD A
' 3
) 7
7
Ky
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Cl3 014 C]4
- e|gtd - , - hgtt - C2oexp[-—016h] (5.95)
16 ) 16
16
where Cls’ Cl4’ and 016 were given by the following

relations derived in Appendix C:

C = 2cos(C ) izm— - 1| |zFm— -
13 7186, €%, (01)2(0“)3/2

c 3 1/2
1 - 3'HH—3‘—3]
C C°C

11 1 11

SCGC12
C = + 2cos(C )
14 (01)2(0“)5/2 5

2 1
C = -1
16 C (011)1/2 C}C11
where
_ 2 _ - [l _
Cn - [C Cz] and C12 - [C Cz]

and where 06 and 020 are constants of integration.
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~ VI. Trajectory States of Validity for the Non-Rotating .
Y

S .
A Earth Equations of Motion

; Introduction X
. In Section IV, the rotating planet terms in each of the :
; five equations of motion for Earth atmospheric entry were :
3 examined. The dq/dh equation of motion for a non-rotating

i Earth was found to be never valid for the investigated

i ranges of inclination angle and speed. Because of this, a I
f solution was developed for the dq/dh equation of motion for A

the three-dimensional lifting atmospheric entry of a

% rotating, spherical Earth. This was accomplished in Section
:: V by treating atmospheric entry as a boundary layer problem '
‘ ® and applying the method of matched asymptotic expansions.

: In Section IV, trajectory states were found to exist

; where some of the non-rotating Earth equations of motion are

v valid for a rotating Earth. The dfi/dh, da/dh, and dI/dh

i: non-rotating equations of motion were all found to be valid

b for the same entry trajectory states. Other, independent

iy trajectory states were found to exist where the du/dh non-

E rotating equation of motion is valid for a rotating Earth.

z In this section, these trajectory states are examined in

- more detail for the du/dh and dI/dh equations of motion.

b Plots of the Rotate term solutions to these equations are

E generated for a large range of realistic values of u, h, a,

’ v, and I. Trends in these solutions are discussed and the

A ;
ol !
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non-existence of overlapping trajectory state solutions

between the du/dh and dI/dh Rotate equations is verified. A
few methods to estimate solutions to the du/dh and dI/dh
Rotate equations are also presented.

Solutions to the du/dh Rotate Equation. In Section IV

it was found that the rotating planet terms in the du/dh

equation of motion are

du 1/2
TN = - 4|€,u(1+h) cosl
h Rotate [ 2 ]

. 9 .
2 cosasin‘ Isina
- 262(1+h) tany (6.1)

Setting this equation equal to zero and solving for flight

path angle gives solutions for trajectory states where the

° rotating Earth terms in the du/dh equation of motion are

zZero.

- tan! —CcosasinasinQI (6.2)
Rotate = 0O 2cosl .
3 1/2
where C = [il%hl 62] (6.3)

Solutions to the dfi/dh, da/dh, and d1/dh

Rotate Equations. In Section IV, the solutions for the

Rotate term expressions were found to be identical for the
da/dh, dfi/dh, and dI/dh equations of motion. This result
simplifies the search for trajectory states where the non-
rotating Earth equations of motion are valid for a rotating

Earth. Instead of detailed examination of the solutions to



oo
LA A4

]
’
. all three of the da/dh, dfi/dh, and dI/dh Rotate term 2
g -. o
! - expressions, examination of only one of them is required. :
, In this section the solutions to the dI/dh Rotate term
§
P expression are examined. From Eq (4.13) )
N\ h
. dI (1+h) 1/zcosasinI .
X EEI = 2[52 3 ] '——EEH———(cosatan7 - sina)
Y Rotate 7
En i
X 2 .cosasinacosIsinl 2
K - €. (1+h) utany (6.4) ;
" Setting this equation equal to zero and solving for flight :
v -
\ path angle gives solutions for trajectory states where the :‘
2 rotating Earth terms in the dI/dh equation of motion are -
¥ Zero. 5
:' d
- -1 |sina + Ccoslsina
- . 7 = tan 2cosa (6.5) .
(@ Rotate = O
¥ ;
! Non-Existence of Overlapping Solutjnns to the du/dh and .
» ), : Q
: dI/dh Rotate Equations
: To verify the non-existence of overlapping solutions to Ny
hY
. ~
o the du/dh Rotate and dI/dh Rotate equations, Egqs (6.2) and -
: ~
(6.5) are equated. '
A -1 |-Ccosasinasin’I _ -1 |sina + Ccoslsina ]
tan = tan )
2cosl 2cosa A
Simplifying A
| 4
i g
.. ~Ccos’asinasin’I = cosIsina + Ccos’Isina (6.6) y
N 7
L] :":‘;'\
! 125

|
13
-
-
L4

L C '-“"-:’\'5“’\' AT Vgt i W A N R Sy S e ’\’\' -. R R RN A LR N S



LA Vo AN OB AN 004 2 ANEC AR AN LA A P A S AR ARt i S et Rt B A A Y w¥ GV W, Wi VoW

X, A trivial solution to this expression is given by sina = 0 . .

The non-trivial solutions to Eq (6.6) are found by dividing

by sina and then solving for cosa. 0
\
_ 1/2 y

cosa = E%§l - coszl] /sinl (6.7)

where C = [1112136 ]1/2

u 2

For real solutions to exist for Eq (6.7), the following

condition must be true: K

E%§l + cos’I < O (6.8) !

Since values of non-dimensional altitude and speed ratio
are never negative, C always has a positive value. The term
cosl is never negative for prograde entry trajectories.
Hence, the condition given by Eq (6.8) is never satisfied
and overlapping solutions to the du/dh and dI/dh Rotate

equations do not exist.

Graphical Trajectory State Examination é

In the following pages, the trajectory states which .
occur when the Rotate equations are zero are examined in ;
more detail. This is equivalent to finding trajectory ;

states where the non-rotating Earth equations of motion are

)
oy

v s b

equivalent to the rotating Earth equations of motion for

a"a g -4 s

r Y

lifting atmospheric entry. Solutions for 7 are examined

which result from placing a wide range of possible
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combinations of u, h, a, and I into the Rotate solution

equations, given by Eqs (6.2) and (6.5), for the du/dh and
dI/dh equations of motion. These solutions give trajectory
states for which the non-rotating equations of motion are
perfectly valid for rotating Earth entry analysis. This
validity is dependent upon the physical characteristics of

the planet under consideration, namely €, and the type of

trajectory being analyzed; validity is not directly
dependent on any of the vehicle’s physical characteristics.
Determination of the validity of the non-rotating equations
of motion for planets other than Earth could be undertaken
in a similar manner as the analysis given in this section.

A computer program was developed to solve Eqs (6.2) and

PEFF S EN

(6.5) for a large range of u, h, a, and I. Plots of
families of curves of 9 versus I are presented for various

ranges of a and for realistic combinations of u and h.

PP ry:

Appendix E presents three example Earth atmospheric entry
trajectories to give an indication of what the dimensionless

variables u and h are in relation to more conventional entry

et N N N SS

trajectory parameters such as Mach, altitude, and velocity.
Most current and planned lifting entry vehicles have

trajectories which fall within the ranges of u and h given

EF RPN

by these examples. The realistic combinations of u and h
)
discussed in the following pages are derived from liberal ﬁ
estimation of their ranges in these example trajectories. -
’
q
Values of u selected for investigation ranged from circular
N
~
N
;
127 p




orbital velocities to low supersonic speeds where terminal

maneuvers, such as landing approaches, are usually
initiated. Realistic values of non-dimensional altitude :
corresponding to these values of speed ratio were used in
this analysis. Values of argument of latitude at epoch and
orbital inclination angle had ranges of 0.0 < a < 360

degrees and 0.5 < I < 75 degrees, where most atmospheric

entry occurs. Because of the large number of plots needed
to display data trends, some of the plots which are

discussed in this section are contained in Appendix F. In

;%

all the plots referred to in this section, a, the argument

of latitude at epoch, is referred to as "Alpha". All values

" e B

of 7, a, and I given in these plots are in units of degrees.

» “w

. Trajectory States of Validity for the du/dh Non-Rotating

Earth Equation of Motion. Trajectory states are

presented below where the non-rotating Earth du/dh equation

e v s a e n0

of motion is valid. Trends in these solutions to Eq (6.2)
are discussed.

Typical Solution Observations. Figure 13 is a

Lt e s

typical plot of solutions to Eq (6.2) of flight path angle
versus orbital inclination angle. For constant, non-zero

values of argument of latitude at epoch, 7 decreases as I

L
s

increases. Values of flight path angle also decrease in

this plot as a increases. In addition, as a increases for a

I

Tt al Aty

constant I, the change in 7 decreases, especially for large

inclination angles.

r
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Effect of h Variation. Holding all other variables )
P
L.
- constant, the effect of change in non-dimensional altitude
; on these solutions is negligible. Figures F1 and F2 in i
x ’
N Appendix F present results for values of h higher and lower .
», X
N than in Figure 13 for the same values of u and a.
. Comparison of Figures F1 and F2 indicates that only
f extremely small changes in flight path angle occur for this
, .
N large change in h. This ineffectiveness of h variation on v :
Al can also be intuitively seen from examination of Eq (6.3). .
N r
N Note that for all realistic values for non-dimensional p
h
N
Ay altitude, 1.0 is much larger than h in the expression '
. 3
L (1 + h)37/? 3
3 .]
", ‘ Effect of u Variation. Figures F3 and F4 present b
@
- solution results for values of speed ratio higher and lower
than in Figure 13 for the same range of values of argument
. of latitude at epoch. Comparison of Figures 13, and Figures
’ F1 - F4 demonstrates that large changes in flight path angle
- occur for this large range of u. As u decreases, the
v
A magnitude of 7 increases for curves of constant a
“ Effect of a Variation. The trend of the effect of
N
N variation in argument of latitude at epoch can be seen by
P review of F:gures 13 and Figures F1 - F4. For the range of
’ values of o in these plots, 7 and the change in 7 decrease
-
y as a increases along lines of constant inclination angle.
<
Qg These trends are more prominent for large values of I. The
v e a terms in Eq (6.2) are
‘ -
i o
!
)
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- cos(a)sin(a)

Yy |
: " Examination of this term and the properties of the inverse '
v; tangent function in Eq (6.2) indicates the solutions given
;: in Figure 13 will be symmetric about a = O and 180 degrees
* and these symmetric solutions will repeat about
.2 +90 - a (degrees) for z a
5 Figures 13, F5, F6, and F7 demonstrate these
d observations.
‘; Trajectory States in Three Dimensions. Figures 14 and
3 15 present three-dimensional plots of the trajectory states
. of validity for the du/dh non-rotating Earth equation of
i motion. Solutions to Eq (6.2) are plotted here for flight .
,} _ path angle versus orbital inclination angle and argument of
; ‘e latitude at epoch. The solution surfaces in these figures
are constructed of lines of constant a and lines of constant
flight path angle. These contours of constant 7q are drawn .
.. for changes of 7 of 0.165 degrees in Figure 14 and changes
.E of 7 of 1.04 degrees in Figure 15. In both of these plots,
E values of flight path angle are near zero for small
-, inclination angles and for very small values of argument of
,; latitude at epoch. Although Figures 14 and 16 present
E solutions to Eq (6.2) for vastly different values of speed
. ratio, the two plots look almost identical; only the scale
k of flight path angle values differs.
:
v
.
\
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. Trajectory States of Validity for the dI/dh Non-Rotating

'4 .‘
PRt 2 v 2 P 4

o,

w Earth Equation of Motion. Trajectory states are given below
g: where the non-rotating Earth dI/dh equation of motion is
E valid. Trends in these solutions to Eq (6.5) are discussed.
;; Typical Solution Observations. Figure 16 is a
f typical plot of solutions of flight path angle versus
E orbital inclination angle. For constant non-zero values of
2 argument of latitude at epoch, 7 increases as I increases.
'{ Values of flight path angle decrease in this plot as values
3 of a increase.
X Effect of h Variation. Holding all other variables
‘x constant, the effect of change in non-dimensional altitude
;% on these solutions is negligable. Figures F8 and F9 present
:f ‘~ solution results for values of h higher and lower than in
N ‘ Figure 16, and for the same values of u and a. Comparison
.
- of Figures F8 and F9 indicates that only extremely small
N
?' changes in 9 occur for this large change in h. As in the
\i case for the du/dh Rotate solutions, this ineffectiveness of
E h variation on 7 can also be intuitively seen from
- examination of the expression for C in Eq (6.5).
? Effect of u Variation. Figures F10 and F11 present
% solutions for values of speed ratio higher and lower than in
2 Figure 16 for the same range of values of argument of
% latitude at epoch. Comparison of Figures 16, F10, and F11
E indicates that large changes in 7 occur for this large range ‘
s of u. As u decreases (along with the ineffectual non- )
N ‘-
M’ ‘\'J'}
N,
iy
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dimensional altitude), values of flight path angle increase
for curves of constant a.

Effect of a Variation. The trend in the effect of

variations of argument of latitude at epoch can be seen by
review of Figures 16 and Figures F8 - F11. For the range of
a in these plots, 7 decreases as a increases for constant I.
This change in flight path angle is more prominent for small
values of speed ratio. Change in the range of a can also be
easily seen analytically. The a terms in Eq (6.5) can be
written simply as tan(a) . Examination of this term and
the properties of the inverse tangent function in Eq (6.5)
indicates the solutions given in Figure 16 will be symmetric
about a = O and 180 degrees, and that these symmetric

solutions will repeat about
a ¥ 180 (degrees) for = a

Figures 16, F12, F13, and F14 demonstrate these
observations.

Trajectory States in Three Dimensions. Figures 17, 18,

and 19 present three-dimensional plots of the trajectory
states of validity for the dI/dh non-rotating Earth equation
of motion. Solutions to Eq (6.5) are plotted here for
flight path angle versus orbital inclination angle and for
argument of latitude at epoch. The solution surfaces in
these figures are constructed of lines of constant flight
path angle and lines of constant argument of latitude at

epoch. Figures 17, 18, and 19 display plots generated for

136

.-

AP VL T A R PR P P ST AL

- v PRIV T I TS VL - e Tt -
N N N 2N N TN PO NN

.



T AT A S W i W L W e e

(6210 = q ‘ 098" = n) uorqop Jo uotqenbyg y ‘
: : P/IP ‘y3reg Burjwjo
~UON 343 J03 £3Iprre, JO suorqyniog 2ajeqg L109da(wa] jo oo.a.«.u:M "L1 @xnBury

137

- -‘Q..'I‘..
e .,
PR S SR,

P

EI L S -t
O R
S . S AL

P
ot Catatnans

AT

TN
. (‘A(-“‘ g

-, .
s
WY Y

.3
Latlus

o S e e
“ te
AT

>

2

\d' -

R -_,W



a o
(

NEACARAASA G 2°at, 400 0 ¢ g 4 it T et At et i i hig* dva o

N L AN AW W T R TR G A SV W VN O T e Ty A

R R Y 8

NTE WA EI AL LS P ]

(v800" =y ‘ oog* =
~UON 343 JOF £A3Tprlep

FOSTSOEY T,

n) UOI3O0f jo uotrjenby yp/Ip ‘Ya3xey Buiqujoy
3O suoijnjog aje3g Lr1o3oa(el] jo @dwjing

"81 dindry

f\-\-
P4

138

RN QIR TRPETE ot

]

LR AU PR At AT N T R AT T AV e A
S IV Im.f:'u"}-{'.l{' PN N

L
P




UOTqa0N jo uotrqenby yp/[p ‘yjzxeg Burqeqoy

-UON 343 IOy £3TpPI[®A JO SUOIN[OS 333G 410909 (wa] jo aocejang ‘@I Ind1y

»_1
-..f
v
/
4

ST
DAV

AT AT S\ PaV IRl

b T e PR
PO S TS

-
I

~
’\




." -'- o AR v e a1 At at P AR A 0 st aia it ln b Tu Nl “od Sul el And DAl is el Pl S A A A ARSI A S N A A A AN,

successively decreasing values of speed ratio. Although

R L L )

these values of u differ greatly, the solution surfaces are

very similar in appearance.

by L, VL

' SN

Solution Estimation Methods

Some effort was spent in developing the computer program

(eI E
AR N Y

to solve Egqs (6.2) and (6.5) for large ranges of values of

speed ratio, non-dimensional altitude, orbital inclination
angle, flight path angle, and argument of latitude at epoch.

To rapidly assess the validity of the non-rotating Earth

Sy

> v v v =

atmospheric entry equations of motion for a particular
trajectory state, there is an advantage to having a quick
estimation algorithm. On the following pages, methods are
presented to estimate some solutions to the du/dh and dI/dh

Rotate expressions given by Egs (6.2) and (6.5),

i

»
D

respectively.

Estimates to the du/dh Rotate Solutions. Figure 20

Y]

presents a plot of trajectory state solutions to Eq (6.2),

« & o _a & &

the du/dh Rotate equation. The solution surface in this

NSNS
©

figure is . onstructed of lines of constant flight path angle

and lines of constant argument of latitude at epoch. Two

h Rk

separate estimations of solutions to Eq (6.2) can be made

Lo N

with plots such as Figure 20. The first is the

X

approximation that values of flight path angle in the

5%

triangular plane (ABC) of trajectory states have some

constant, near-zero value. In general, this is a good

“u approximation for 17, especially for high values of u. The

-fu¥s
P
e}
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Estimation of Trajectory State Solutions of Validity for the Non-
(u

Rotating Earth, du/dh Equation of Motion

Figure 20.
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ABC plane of "constant" 7 is bounded by

0.0 < a < 45.0 degrees
0.5 ¢ I £ 75.0 degrees
Line AB: a = -(0.60403)I - (45.302) degrees

Therefore, the conditions for assuming flight path angle has

some near-zero value are given by
(.02207)a + (.01333)I € 1.00 (6.9)

and by the ranges of inclination angle and argument of
latitude at epoch given above.

The maximum error in assuming <9 = 0.0 degrees in the
ABC plane in Figure 20 is approximately equal to the value
of 74 corresponding to the second flight path angle contour
from the top of the plot. This maximum error in flight path
angle is about g = -0.56 degrees for this plot.
Application of this estimate to the corresponding ABC planes
in Figures 14 and 15 give maximum errors in flight path
angle of about 0.30 and 1.5 degrees, respectively.

An estimate of a non-zero value for flight path angle in
the ABC plane can reduce these maximum errors. Assuming the
value of 7 in this plane is equal to half the 7 value of the
second constant 9 contour in Figure 20 produces an estimated
flight path angle of -0.28 degrees with maximum error of
0.28 degrees. Likewise, estimates of g = -0.15 degrees

and q = -0.75 degrees in the ABC planes in Figures 14 and
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. 15 give maximum errors in flight path angle of about 0.15
[] '\,'
. -

! o degrees and 0.75 degrees, respectively. .
> Another approximation to the solution of Eq (6.2) is
’T given by the simple assumption that flight path angle has )
: near-zero values for small values of inclination angle.
- Maximum error in an estimated flight path angle is dependent A
;E upon the chosen value of inclination angle for this :
v )
N approximation. For example, assuming 7 = 0.0 degrees for J
¢ I < 15.4 degrees invokes a maximum error in flight path 3
% angle of about 0.28 degrees in Figure 20. Assuming 9 = 0.0 ]
t; degrees for I < 29.2 degrees produces a maximum error in ]
- flight path angle of about 0.56 degrees in Figure 20. :
E An estimate of a non-zero value for flight path angle in )
'; .. the ABC plane can reduce these maximum errors for the same %
3 > range of inclination angle. Assuming 9 = -0.14 degrees .
) for I < 15.4 degrees produces a maximum error in q of X
. about 0.14 degrees in Figure 20. Estimation of a flight
0\ path angle value of -0.28 degrees for I < 29.2 degrees ;
: gives a maximum error of 0.28 degrees. i
A The accuracy of both of these estimations for solutions p
5 to the du/dh Rctate equation is heavily dependent on the
; value of speed ratio for a given trajectory state and the
2 estimate of flight path angle.
‘3 Planar Estimation to dI/dh Rotate Solutions. A planar
g estimation method was developed to obtain rough estimates of
. solutions to Eq (6.5). For given values of speed ratio, the
E
'
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following relations give an estimate of the planar surface

o

. -~ of solutions that appears in Figures 17 - 19.

N _ a b X
b 17=7 - cla-a) -2(1-1) (6.10)

(S

,j where

” .
- c = -89.40 degrees Y
- )
'& IO = 52.65 degrees

~ a, = -21.00 degrees ]
. and values of a, b, and ¢ are polynomial functions of u, g
L )
' given by

-~ .
v a = (106.701) - (27i.537)u + (1209.57)u’ :
" L)

- - (1840.30)u® + (895.29)u" .
[

y b = (5.657) - (90.002)u + (401.76)u’

':I d
S - (611.66)u° + (297.66)u’

o 7, = (-26.104) + (81.784)u - (365.55) u’

=, ! ‘
' 3 4 |
N + (556.77)u” - (271.00)u
o Examples of planar estimates of solutions to Eq (6.5), 1
[

, generated by the above method, are presented in Figures 21 -

JO

o 23. These estimated solutions correspond to the numerically

- generated solutions presented in Figures 17 - 18. A more .
L .
7 exact method to estimate solutions to Eq (6.5) is given by a

4

" three-dimensional curvefit algorithm described below. !
\ t:.;'_

A
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Polynomial Curve Fit Estimation to dI/dh Rotate

Solutions. Using polynomial least squares curve fitting
routines, a curvefit to the solutions of the dI/dh Rotate
equation was developed for ranges of inclination angle and
argument of latitude at epoch of 0.5 ¢ I ¢ 75.0 degrees
and -45.0 < a < 0.0 degrees. This curvefit is three-

dimensional in the sense that it predicts solutions for g

from Eq (6.5) for various I, a, and u. Since changes in h

were shown to produce negligable changes in 9, h was not

included in the fit. The resulting algorithm produces
accurate solution estimates. Figure 24 presents numerically
generated values of 9 versus I, and Figure 25 presents
corresponding curvefit generated estimations of 7 versus I

for the same values of a, u, and h.
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: “ik VII. Conclusions and Recommendations
b Conclusions
ﬁ This effort investigated the validity of the non-rotating
* planet assumption for three-dimensional Earth atmospheric
;E entry. This study was limited to entry at orbital
_; inclination angles between 0.5 and 75.0 degrees, where most
b Earth atmospheric entry occurs, and vehicle speeds ranging
.i from circular orbital velocities to low supersonic speeds, '
JE where terminal maneuvers (such as landing approaches) are
¢ usually initiated. Constant lift-to-drag ratio and ‘
E ballistic coefficient were assumed along the vehicle’s
f: flight path. Validity results are coordinate dependent
{- ® since singularities exist in the equations of motion. On
;j | the basis of this investigation, the following conclusions
3 are made:
" 1. As a set, the five non-rotating planet equations of
: motion (Section IV) are invalid for Earth atmospheric
|F entry. Hence, the non-rotating Earth assumption,
" common in analytical entry analyses, produces
; incorrect entry trajectory results. Solutions to the
l? non-rotating Earth equations of motion were derived
; from expansions of the rotating Earth equations of
C.
; motion using the method of matched asymptotic
i expansions. These solutions are given by Eqs (5.86)
\
(6.90) .
" ';_.E;.
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P

The dq/dh equation of motion for a non-rotating Earth
is never valid for the ranges of inclination angle
and vehicle speeds mentioned above. Hence, a
solution, Eq (5.95), was developed for the dq/dh
equation of motion for three-dimensional lifting
atmospheric entry of a rotating spherical Earth.

This solution is valid for the entire non-dimensional
altitude domain and it accounts for the Coriolis
acceleration on the flight vehicle. The method of
matched asymptotic expansions was employed in this

derivation.

A variety of realistic Earth atmospheric entry
trajectory states exist where some of the non-
rotating equations of motion are valid for a rotating
Earth. The dfl/dh, da/dh, and dI/dh non-rotating
equations of motion are valid for the same entry
trajectory states for a rotating Earth. Other
trajectory states exist where the du/dh non-rotating
Earth equation of motion is valid for a rotating
Earth. These two sets of trajectory states do not
overlap for the investigated ranges of entry

inclination angle and velocity.

A number of trajectory states are presented where the
du/dh non-rotating equation of motion and the dfi/dh,
da/dh, and dI/dh non-rotating equations of motion are

valid. Holding speed ratio constant, realistic
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variations of non-dimensional altitude causes
negligible changes in these states of validity. The :
magnitudes of the flight path angles where these non-
rotating Earth equations of motion are valid increase
as speed ratio values decrease. Trajectory states of
validity are symmetrical about various values of
argument of latitude at epoch for the non-rotating
Earth dI/dh and du/dh equations of motion. Two
methods to estimate flight path angle values where

these equations of motion are valid are also

presented.

Recommendations

-

Based on the observations of the assumptions and of the

recommendations for further study are proposed:

.- - w

findings of this investigation, the following ]

>

1. Investigation of the validity of the non-rotating
planet assumption for three-dimensional Earth
atmospheric entry was limited to orbital inclination
angles between 0.5 and 75.0 degrees. Further
investigation should be undertaken for other ranges
of inclination. Near-polar and negative inclination

angles would be of particular interest.

2. Further study of the trajectory states where the

du/dh and the dfi/dh, da/dh, and dI/dh non-rotating

Earth equations of motion are valid is warranted. An

153

TR
b, .A\:’h\ ' ™ M 'i\

O )




g e A Ean~o e e o gas Rav g » ¥ e ke PoEaN mau et Bal Eat % pat mav et _god ) LV
AT A T W N N W N T W W N e g W W W W Ty Walun e Ma VN Wy W W W N - W

attempt should be made to construct entire
N trajectories from these trajectory states. If
successful, a reduction in the complexity of the
equations of motion could be made for certain
trajectories and possibly even specific trajectory
classes. This reduction would allow the non-rotating
planet equations of motion to be used in place of the
more complex rotating planet equations of motion,
causing past analytical studies that utilized the
non-rotating planet assumption to be valid for these
trajectories. Current trajectory optimization
computer programs consume many valuable hours of
computer run-time, iterativly integrating the
rotating planet equations of motion. Optimization
computer programs such as the Air Force Flight
Dynamics Laboratory’s ENTRAN (ENtry TRajectory
ANalysis) and OTIS (Optimal Trajectories via Implicit
Simulation) codes, could greatly benefit from a
reduction in the complexity of the rotating planet

equations of motion.

3. The method of matched asymptotic expansions has
proven to be a powerful tool in the development of
solutions to boundary layer problems such as
planetary atmospheric entry. Further application of

this method should be undertaken to obtain a full set
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of solutions to the equations of motion for three-
dimensional lifting atmospheric entry for a rotating
Earth. This activity would entail finding solutions
to the complex differential equations given by Eqgs
(6.20) - (5.24) and Eqs (5.46) - (5.52), and then
matching and forming composite solutions from these

results.
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7 e Appendix A
3 " Derivation of Equations Relating 6, ¢, ¢ and a, 0O, T
o Using Spherical Trigonometric Relationships
. ;
K This appendix presents the basic derivation of equations .
: relating 6, ¢, ¥y and a, 1, I using trigonometric
% relationships. In this paper, the planetary model is
: spherical and hence the spherical sine and cosine laws can
&, be successfully applied. N
i Figure Al depicts a reference spherical triangle. For
2 clarity, the angles between the curved line segments are
i called interior angles whereas the angles formed between the
i unit vectors, ;i’ ;j’ and ;k’ are termed exterior angles.
f ; Hence, A, B, and C are exterior angles and a, b, and c are
:E interior angles in Figure Al.
‘{ The sine law for spherical triangles states that the
ratio of the sine of an interior angle to the sine of its
v
é opposing exterior angle is constant.
: sin(a) _ sin(b) _ sin(c)
sin(A) - sin(B) - sin(C) (A-1) :
; The cosine law for a spherical triangle states that the
;; cosine of an interior angle is the sum of two products. The
3 first product is formed of the cosines of the other two
;‘ interior angles; the second product is formed of the sines
} of the other two interior angles and the cosine of the
R
“ a
%
156
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Figure Al. Reference Spherical Triangle
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opposing exterior angle. The cosine law is given by the

Sar=y

following expression.
o cos(a) = cos(b)cos(c) + sin(b)sin(c)cos(A) (A.2)

Egs (A.1) and (A.2) are used to relate the variables 6,

¢, ¥, a, 1, and I. From comparison of Figures 11 and 12

S

-~ (Section II) to Figure Al, the exterior and interior angles

;: of the formed spherical triangle are

»

. Exterior Angles Interior Angles

LY

2 A=6 -0 a=x/2-¢

2% -
o B=¢ b=1I

. -~ C=a c =x/2
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where

@ = longitude

¢ = latitude

¥ = heading angle

a = argument of latitude at epoch

. = longitude of the ascending node
I = 1inclination angle

Application of the sine law to these variables gives the

following:

sing _ sina _ _sin(6 - 1)

sinl = sin(n/2) = sin(n/2 - ¢)

Since

cosy = Sin(% - ¥) and sin(%) =1

sina = sin(6 - ) (A.3)
cosy

sing = sinlIsina (A.4)

Application of the cosine law to the inclination angle

gives the following.

cos(I) = —cos(%)cos(% - ¢$) + sin(%)sin(% - Y)cos(¢)
Since siny = cos(% - ¥) and cos(%) =0
cos(I) = cos(y)cos(¢) (A.5)

Another application of the cosine law gives

cos(%) = —cos(I)cos(% - ¢) + sin(I)sin(% - ¢)cos(a)
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which reduces to cos(I)sin(¢¥) = sin(I)cos(¢)cos(a)

_ tany
or cosa = (A.6)

Yet another application of the cosine law gives
" . N N
cos(§ - ¢¥) = —cos(§)cos(1) + 51n(§)s1n(1)cos(9 - )

sin(y) = sin(I)cos(6 -0) (A.7)

Some other relationships can be found that are coupled
to Eqs (A.3) - (A.7) and are useful for some occasions.

Substituting Eq (A.5) into Eq (A.6)
cosa = cosg¢cos(6 - 0) (A.8)

Substituting Eq (A.5) into Eq (A.3) gives

sin(6 - 0) = 2nd (A.9)

Rewriting Eq (A.6) and substituting in Eq (A.5) gives the

expression

cosasinl
cos¢

sin(y) =
Substituting Eq (A.4) into this result

sin(y) = L2né (A.10)

tana

The relations given by Egqs (A.3) - (A.10) are used in
Section III to transform the equations of motion from terms
of latitude, longitude, and heading angle to terms
containing orbital inclination angle, longitude of the

ascending node, and argument of latitude at epoch.
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Appendix B

Some Common Expansions

This appendix presents the Taylors series expansion
formula and some basic expansions of common functions that
appeared in the equations of motion.

The Taylor series expansion of f(x) about x = X, is

given by the following expression:

o (x - x )"
£ = Lo £ oy 0
n=0
a"f (x )
where f(n)(xo) = ;;;——Q— and fo(xo) = f(xo)

Application of this equation to various functions within
the equations of motion was facilitated with the following

two trigonometric identities:

cos(a + €b) cos(a)cos(eb) - sin(a)sin(eb)

sin(a + €b) sin(a)cos(eb) + cos(a)sin(eb)

The Taylor series expansion of the cosine and sine

functions gives the following familiar expressions:

e’ b’ e’ b? e b’ e’ b

cos(eb) = “Fy— - "5 * TG - s ¢t
Hence
cos(eb) =1 + 0(62)
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sin(eb) =

+
Therefore

sin(eb) = eb + 0(63)
As an example, the following expansion of the cosine

function is derived to 0(62).

cos[a + €b + ezc] = cos(a)cos[eb+62c] - sin(a)sin[eb+52c]
= cos(a)[cos(eb)cos(eQC) - sin(eb)sin(eQC)]
- sin(a)[sin(eb)cos(eQC) + cos(eb)sin(egc)]

= cos(a) - eb'sin(a) + 0(62)

The following relations were obtained through

application of the Taylor series expansion:

cos[a + eb + 0(62)] = cos(a) - eb*'sin(a) + 0(52) (B.1)
sin[a + €b + 0(62)] = sin(a) + eb*cos(a) + 0(62) (B.2)
tan[a + eb + 0(52)] = tan(a) + _€b + 0(62) (B.3)

4 cos’ (a) R

]

"

2 -1 1 eb 2 N

[tan[a + €b + 0(e )]] = %Tan(a) sin2(a) + 0(e?) (B.4) ;

. 2 —1_ 1 .cos(a + 2

[sin[a + eb + O(e )]] - sty - € eI 0(e?)  (B.5)
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vf [cos[a + €b + 0(52)]]— -1 __ eb'm— + 0(52) (B.86)

[a + €b + 0(62)]—1 1_€by o) (B.7)

ool NN

-1 /2
]1

[a + eb + 0(e?) 2732, 0(e?) (B.8)
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Appendix C

\‘
- Derivation of Solutions to Selected Duter Expansion
Differential Equations
Outer Expansion €’ Terms
The €’ terms of the outer expansions found in Section V
are as follows:
duO -y,
ah ~ (1+h) (C.1)
do % % f
dh ~ (1+h)[ - 1] (C.2)
dIo
) - = © (C.3)
®
df
ah = o (C.4)
da
0 _ 1
dh = (T+h)tany, (C.5)
Scolutions to this set of differential equations are
derived below.
du/dh Equation Solution. Rearranging Eq (C.1) gives :
du :
0 _ _-dh_ _ ‘
_G; = [d+h) or ln(uo) = -1In(1+h) + K
Solution:
u0(1+h) = C1 (C.6)
_g;
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dg/dh Equation Solution. From Eq (C.2)

d
d:0 = (1?%)[ :2 - 1]

Application of Bernoulli’s equation to this
differential equation makes the solution derivation

straightforward. Bernoulli’s equation is given by
d
o + Py = Q)y"

This form gives the sclution (Beyer, 1984:315)

ueXp[(1-n)jp(x)dx] - (1—n)JQ(x)[(1—n)jp(x)dx]dx + C

where v =y~ and n # 1

Hence, o + P(wa = G(b)a

where n = 3, v = qo—z,

P(h) = (llh) , and Qh) = %T = uo(%+h)
Solution: Z%%HY = 1n(1+h)

qJQexp[—Zln(1+h)] = Egjexp[—2ln(l+h)]dh + K
1

1

[q0(1+h)]_2 = _%—J(1+h)_2dh + K
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Integrating gives

v
=2 (1+h) - C, (1+h)’ (C.7)
qo 1
2 2 -1/2
or q, = |2 (1+h) - ¢, (1+h)?] (C.8)
1
dI/dh Equation Solution. From Eq (C.3)
dIO
agr =9 5 I, =¢C (C.9)
dfi/dh Equation Solution. From Eq (C.4)
dﬂo
ar =9 no = C4 (C.10)
da/dh Equation Solution. From Eq (C.5)
e
dao ) 1
dh (1+h)tan’70
By definition, q = cosqy . The expansions of q and cos7y are
given by the following expressions:
2 2
q,+ €q,+ 0(e”) = cos[70+ €Y, + O(e )]
_ _ : 2
= cosy - €7, siny + 0(e”)
By noting the order of € in this equation, it can be seen
that
q, = cosy, (C.11)
and q = _71Sin7o (C.12)
@
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From Egqs (C.11) and (C.12), an expression is found for the

tangent of % -

(1 - C05270)1/2 (1 - q02)1/2

tan7o = cosv =
0 %
1/2

tany, = [—l; - 1] (C.13)

%
where q, was previously found to be

-1/2
q - [%—(1+h) - 02(1+h)2] (C.14)
1

Therefore

]"/2 dh

Jdao - f[%:(1+h) - ¢, (1+h)? - 1 e

Making x = (1+h) causes dx = dh and allows this integral

to be rewritten as

The integral is now in the form of

d
QO = Jﬁz (C.15)

where X = a + bx + cxz, f = 4ac - b2, k = 4c/f,

a=-1, b= 2/01’ and c = -C
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_ _o? 2¢ _
- 1), and k=-C?C,/(c’C, - 1)

The solution to Eq (C.15) is

Hence
_1[ 2x/C1 - 2 } c
a, = cos 2|xl(02-1/012)1/2 3

This solution can be expressed in either of the following

two forms:

- 1 - Ci/(1+h)
a = - cos [(1 o 7o )1/2] + 03 (C.16)
1 2

]1/2 (C.17)

— p— . — 2
or u, = 1 + cos(a0 Cs) [1 C1 02

OQuter Expansion €' Terms

The €' terms of the outer expansions found in Section

IV are as follows:

du1 -u

= Ty - 4[3110 (1+h)

1/2
] cosI0 (C.18)

0 0
tanqo

dI 3(1+h) 1/2cosa sinl
- 2 (cosaotan70 - sinao) (C.19)

u
0
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&
L} »n" -1
: X da] ) 1 _ t,amao.dI1 ©.
dh (1+h)sin27o tanIo dh
if da -7
) or -
dh (1+h)sin2'yo
o
” 3(1+h) 1/2 s1na0cosIO
5 - cosa_tany - sina
; u, tan70 ( 0 70 0)
dn tana_dI
; v 0. 1 (C
k- dh sinIO dh
dn, 3(1+h) ]/2sina0
or g = 2 u tam,yo(cosaotan'yo - s1na0)
‘- dq1 qo 2q1 9 q02
'e ah " (1+h) M BN G Yy -1
1/2
0 0 1.10
In order to find the solution to the dql/dh equation, a
solution to Eq (C.18), the dul/dh equation, must first be
found.
du/dh Equation Solution.
du] -u, 1/2
dh = (I+B) 4[3u0(1+h)] ’cosI0
Since u0(1+h) = C1 and Io = Cs we find that
-,
.
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du1 u

1
dh T (@+h) T

~4cos (C,) - (3C,)'/?
This differential equation is in the form of

&+ Py = Q)

This form gives the solution

y-exp[fp(x)dx] - jQ(x)[IP(x)dx]dx + C

For the dul/dh differential equation

Q= - 4cos(Cs)'(SC])1/2

exp[ T%%KT] = exp{ln(1+h)] = (1+h)

(1+h)u, = Qj(1+h)dh - 2a+n)? 4+ ¢,

Solution:

C

v = TRy - 2(301)1/2cos(05)(1+h) (C.23)

dgq/dh Equation Solution.

v_¥

2 2
dql b |-%D Y 2q1] 9 [qo N 1]
dh ~— (1+h) a 2 v,

0

- 2q cos1, [20202)"/* (0.22)
0
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where U, U, and Io are given by the following equations:

u, = C /(1+h) (C.6)
c

v =Ty - 2(301)1/2cos(05)(1+h) (C.23)

I = C (C.9)

Substitution of Egqs (C.6), (C.9), and (C.23), into Eq (C.22)

gives
dq aa 9°C q a 1/2
1 1 _ 6 _ 1 T 3
aF = 2 C] 2 (1+h) + C, 2q0(1+h)cosCS[C1]
]
2 3
+ 22 (36 )12 (1+h)? cosC (C.27)
02 1 5
1
2 2—1/2
where g, = [651+h) - C, (1+h) ] (C.8)

Eq (C.8) can be substituted into Eq (C.27) to produce a
complicated integral with h. However, for typical lifting
earth atmospheric entry, altitudes of interest range from a
minimum of O to a maximum of about 100 nautical miles. This
is equivalent to a range of non-dimensional altitude of
about 0.0 < h ¢ 0.028 . The maximum h encountered for a
typical lifting entry trajectory for Earth is thus always
less than the small parameter, €, allowing h to also be
utilized as a small parameter in the outer expansion

differential equations. The use of h as a small parameter
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¥
é considerably simplifies the derivation of solutions to some
» l,!-d
"w
J A of the first order € differential equations.
- Expanding the terms in Eq (C.27) for small h and
>
3 neglecting the resultant terms of O(hz) greatly simplifies
the analytical integration of this equation. One term that
Y]
N
. appears often in Eq (C.27) is q, - Rewriting Eq (C.8)
O
' -1/2
: Db = [(2)— * g_h' -G, - h202 - 202h]
K 1 1
§ A condition allowing the expansion of this equation for
small h is given by
o
\ 2 2
:: 6—(1+h) > 02(1+h)
L, 1
- e This condition can be easily seen to always hold true for
'$ any values of Cl, CQ, and h.
-
,: Expanding Eq (C.8) for small h using a Taylors series
e approximation gives
; / /
-1/2 -3/2
: _ [z _ oWl 2 2
: a, = [c] c, ] h[c1 -c,] [C1 20,] '+ 0@m?) (c.28)
v,
fl
i Some other terms appearing in Eq (C.27) are likewise
s
3 expanded:
s
N h C -1 /2 1
o, 1 2 2
o qo(1+h) = [1 5T CC ]-[2 —Cc ] + 0(h*) (C.29) :
~ 1 2 1 2 ¢
LN
b 3
I ]
v by 3
‘2 ;“
4 b,
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'A% at, i

A 5 -1
9,2 = [&-¢,] - [—I—-C]/[——C]+0(h2) (C.30)
LC, ]
a2 1-3/2 1 2 5/2 0
%' = [ -] - 3h[-51— -¢,]/ [01 -¢c,] "+ o) (c.31)
Defining two new constants, both dependent upon C1 and Cz’
simplifies Eqs (C.28) (C.31).
let [— -¢c,] and [— - ¢,] (C.32)
With substitution, Egqs (C.28) (C.31) become
C..h
g = (¢, )7 /2 _ —12 . o@) (C.33)
©, )
-1/2 h 2
qo(1+h) = (Clx) + P— + 0(h°) (C.34)
C (C )
1 Y711
2C _h
q’ = g - ~ + 0(h?) (C.35)
11 (C. )
11
3C.. h
a° = (¢, ). —2 . o?) (C.36)
(€, )
Two other terms in Eq (C.27) can also be expanded.
3 2 -3/2 h 3012 2
q, (1+h)° = (C11) My 2 - ¢ + 0(h°) (C.37)
(C“) 11
-q
1 2
sy = 9 + qlh + 0(h%) (C.38)
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o . Substitution of Eqs (C.33) - (C.38) into Eq (C.27) gives a
[} "
R solvable expression for dq /dh.
-
N dq
g dar = 4% * 4Ch v C b+ Oy (C.39)
o
' where
‘I
~I
. 2 1
= 16 C. (C )1/2 CC11
1 11
2 2C,, [ 1 1 ]
~ c. =1 - + (C.41)
~ 15 C]C“ C“ (C )1/2
b~ 11
I
- c 306012
¥ ENCAERCIPE
i : c 11 3 1/2
, - + 2cos(C )|1 - 322 (C.42)
N ® C cic @
N 117 Y1 T
I
e
b [ 1 11 3 }’/2 3C,
) C = 2cos(C ) |z— - 1]|- - —_— (C.43)
13 s 1011 J .C1C11 c ?c 3/2
1 11
AN
h: The differential equation given by Eq (C.39) is in the form
'
LN} d
& o * POOY = Q00
::? This form gives the following solution
N y'exp[fP(x)dx] = IQ(x) [fP(x)dx] dx + C
N
L For the dq] /dh differential equation y = Q h,
: .5,‘;:;
b
.
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)
)
s
? - _ _ 1Y =
: . P(h) = C16 Clsh , and Q(h) Cla+ Cl4h
E B
With substitution
* : j0,, 4] = on )
; eprP(h)dh] - exp[—Clsh - 2(c, OB?] = exp[-C b + O(b?)
'S
g Therefore
2 qlexp[—Clsh] = C13JexP['C1sh]dh + CI4Jh[exp(—Clsh)]dh + C20
) and the solution to the dql/dh equation is given by
"
,
. 013 C14 [014J
A q = - - - h|A - c exp[—C h] (C.44)
1 C1 6 (C )2 Cl 6 20 16

- 16
-
_? The constants st, 014, and C16 are given by Egs (C.43),
v

° (C.42), and (C.40), respectively. Because h’ terms are
2
: neglected, C15 is dropped from the solution. Hence, a
; solution for q, has been found as a function of two
: constants of integration, 06 and C?O’ and the constants 013'
- C14, and C‘s, which are dependent upon C1 and C2 from the E
" i i
g relations given in Eq (C.32).
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Appendix D J

Derivation of Solutions to Selected Inner Expansion

" Differential Equations

Inner Expansion €’ Terms

The €° terms of the inner expansions found in Section V 35
! are as follows: .
) 33_ - - 2y Be—§ .1 Lcoso (D.1) .
4 € 0 siny CDcos']0 ]
P 1
b
dq0 C y
L -£ N

47— = - 7~ 'Be >coso (D.2)
{ CD N
dI C sinocosa by
d_o_ = C—L'Be_gv—_g_ (D.3) Q
. £ D cosq, s1n7, -
g y
dn C singsina 3
dfo - EL.Be—g.cos sin ZinI (D.4) .
D Yo To 0 ’
da Cc singsina )
0 L.g.-¢€ 0 by

- = - = "Be 5 - D.5

d§ Cp tan1051n70cosIo ( )
Solutions to this set of differential equations are derived \
below. g’
dq/d¢ Equation Solution. From Eq (D.2) 3

dq0 C
L.ge¢€

: 4 = - 7 'Be 5coso A
s d¢ CD .

This is a very simple integration by separation of

variables. The constant of integration is Kl'




'..\

...................................................................
- . . .
---------

.

'~
>

N q, = 6B'Be_§coso + K, (D.6)

du/dh Equation Solution. From Eq (D.1)

du C
To D %o
Previously it was seen that q, = cosy,
dq0 dvy dvy C
0 L _giny 0 ~0 _ “Lp . -§ coso
Therefore, dg ~ 81n70d€ and dE CDBe sin70

The du/dh equation can be rewritten

dy
fio, - J[poe ]t
0 70 70

-

¢ © co dqo d
Lt et

C

-1
L o -€ coso
CD Be sinqo} d’)'O

sinfy0

c 1
+ J[_zu Be ¢ 6&.59§g} .
0 D %

+1
In(u,) = H-zuose'g 1 ] :

C -1
6§'Be_§coso] dq0

After reducing, this equation takes the form

-Cn2dq -CL279
D 0 2 D™ 'o
ln(uo) = J—C——cc—)s—a- + Jaodqo = W + 21!’1(70) + 1n(K3)
-Ch27
Solution: u, = K3q02€xP[CLEd§%] (.7)

dI/df§ and da/df Equations. From Eq (D.3)
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3 dI.  © i
0 e : 0 _ EL.Be_g.s1naco'sao
N e '3 D cosq,siny,
i da0 CL _ sinasina0
" From Eq (D.5) =% = - =—'Be %- -
'f d¢ CD tan1051n7ocosIo
.
- dI dI_ d¢ tanl
_’ By the chain rule d 0 = dfo.da = - ﬁ
j aO 0 0
J
:: With separation of variables, this integration simply
R, produces
) Y
N . . .
.ﬁ s1n0051n10 = 51nK4 (D.8)
A
or
-
? iy sinK4‘
[, I = sin - (D.9)
- 0 sina
& . 0
by .
5 da/d¢ and dNi/df Equations. From Eq (D.5)
é daO _ SL-Be" . 51n051nao
Y d¢ CD tan1051nqocosIo
N dn C singsina
From Eq (D.4) EEQ - EL.Be_g'cos sin iinI
D To Yo 0
X - . da, daO d¢
:: Chain rule an_ - ¢ o —cosI0
L 0 0
a\
2 Substitution gives
od
" da, _, (sink, sinK, 12 1/2
% dn_ = ~cos|sin [sina ] = -1 - [sina ]
.y 0 0 0
i
A “ Rewriting this equation
. \f\
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[ ]
D)
!
t
A

: , - sinao da0
¢ )“- d =
; & Jﬂ J . 2 L2 1172
[s1n a, - sin Kq]
]
?
- To solve this integral, let x = cosa and
L]
a=1- sin’K = cos’K ,
e 4 4
; s . I R
: so dx = sina dao and 1 x sin“a,
L
, Therefore, the integral can be written in the form
3
: J dx -1[ x
3 +————=—F = - CcOS [———J
[az_ x2]1/2 lal
[} -1 cosao
¢ f o - = _ ____o! _
_ Solution: ﬂo = cos [cosK4] K5 (D.10)
X .
‘e = cosK cos(K. - 0 (D.11)
or cose = cosK cos(K, - 0) .
! dI/d¢ and dy/d¢ Equations. From Eq (D.3)
) dI C cosa
dfo = GL.Be ESinUc,os sgn
’ D To To
" dvy C
' From above =2 = —k'Be-E cosg
) '3 CD sin7y
. 0
D
D)
¥ dI0 dIo d§ cosa
By the chain rule = . =tano-
y dy, d¢ d1, cosq,
¥ _ sinK4
y Since a, = sin [sinlo] then by substitution
o,
3 ‘.‘\-"
2
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b
K
o ,
0 . d sinkK -
% > To . -1 [
ﬁ >ﬁ& tanajzagﬁg— = J[cos[s1n [ETET;] dIo
& This can be rewritten as
R
:',c d’yo [ sin2K4 -1/2
tang | —— = 1 - ——— dI
X cos, sin’I 0
I 0
T
\ ( sinl
A = |- 0 /14l
,[sinzK ~-1+sin®1 ]1 2 0
4 0
N
b
&. To solve this integral, let x = cosI0 and
"
i 2_ 4 .2 _ 2
' a’=1 sin K4 = cos K4
I
! so dx = - sinIodIo and
NI
[
-~ T 1 - x? = sin’I
% 0
. Thus, the right side of the integral can be written in the
form
>,
[
: B cos [2] = cos™! [oompt]
‘,:: [32_ x2]1/2 al cosK,
"
% and the left side of the integral is
¢ q \
Y To L )
tanajzsgqg— = tanolog[tan[z + 5—]] + K6
‘3]
;A Solution:
4D
5 7
. cosl = cosk cos[tana'log[ta.n(I + 2 ] + K (D.12) _
L N, 0 4 4 2 6 '
4 \f.' (
M \
N
" 179
’
»

o e S A S AN

wyw SR 0. e e S AP R RS bt NN
d . A



ERANEYYY

e g

P
TR W K,

= %%

-
-

[N g by |

1\:‘{

2

J‘,‘J'

Wy J'-"d‘-f-('\-r_f." .\'-"‘-‘V'.\&-r\‘- .--;'.‘..

......

Inner Expansion ¢! Terms

The €' terms of the outer expansions found in Section V

are as follows:

dI C - a, sina cosa cosa
EEL = EL'BQ—€Sina[cosl sino + 1, 20 - 71————2— (D.13)
D 70 70 cos” q sin 70
da1 tanao dI
df ~ ~ tanl, T (D-14)
da C sina sina
or E_L = EL‘Be—gsina['y1 s g -1, 5 0
S D cos 7otanIo sin 7otanIo
sinaO a cosa,
- Il . . 9 + 1cos'y sinqy tanl
cosq,siny sin Io 0 0 0
du cosq C C 7, coso
v _ 2u Be §- v 0 + L.cosao + L. 1
d§ 1 1Cn cosy, C . 2
sin’ % D D sinq cos” v,
C
- 2u]Be_£'[ - + CL°°z” } (D.15)
siny pcos,
dn1 tanao dI
d¢ = 81nI d§
df C sina sina
or = = EL'Be—fsino[q 5 0 - 5 0
3 D ! cos 7osinIO sin '7osinIO
singsina cosa
-1 ° 2 M 71cos sin ginI (D.16)
cosqosin7osin Io %o To 0
dq
1
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To solve the dql/dh equation is a trivial exercise;

solutions to Eqs (D.13) - (D.16) are not required.

dq/df Equation Solution. From Eq (D.17), q, is simply

(D.18)
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Appendix E

."n
<

Example Earth Atmospheric Entry Trajectories

e

This appendix presents three example Earth atmospheric

. entry trajectories to give an indication of what the

' dimensionless variables u and h are in relation to more

. conventional variables such as Mach, altitude, flight path
angle, and velocity. These trajectories were generated by

; AFWAL/FIMG, Air Force Flight Dynamics Laboratory personnel

5 in the course of flight performance analysis support for

:_ current hypersonic entry vehicle studies. Modern trajectory

N analysis computer programs were utilized to produce this

-~ data.

2 . Example Trajectory 1 is the gliding entry trajectory

for a relatively high lift-to-drag ratio vehicle (about

3.0). Example Trajectory 2 is the gliding entry trajectory

RSN

“ £¥

for a low lift-to-drag ratio vehicle (about 0.5). Example
Trajectory 3 is a very steep gliding entry trajectory for

the same low lift-to-drag ratio vehicle. This last

LA L I AN

trajectory is somewhat non-realistic due to the extremely
high dynamic pressures (and hence severe heating)

encountered. However, it is included to help give an

AR A UL

indication of the extreme in u and h combinations. Many
current and planned lifting entry vehicles have trajectories

that fall within the ranges of u and h shown in these

PP e

examples.
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; :
: f For the sample trajectories presented in Tables I, II, ;
; oy ;
& R and III, the following variables are defined.

;" y = Altitude (kft) X
4 -
3 7 = Flight path angle (deg) i

,

) V = Velocity (kft/s)

. h = Non-dimensional altitude = r/r* :
Wy q
. u = Speed ratio

)

¢ A
\

o *
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4 :
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B o,
s ’M A
a :
e
N Table I Example Trajectory #1
!
. Mach _ y (kft) v (deg) V (kft/s) h (107%) u
o 28.3 300.0 -0.7 25.00 14.34 .942 ]
' o
- 27.3 252.5 ~0.8 24.98 12.07 .939 ;
27.0 270.5 -0.2 23.90 12.93 .860
a 24.6 240.0 +0.4 23.34 10.64 .819 ‘
) ]
21.4  212.7 +0.3 22.26 10.16 744 '
f A
_ 18.3 200.0 -0.2 19.19 9.56 .553
o
o 17 .4 201 .4 -0.4 18.24 9.62 .499 .
- 13.0  176.4 0.1 14.03 8.43 .295 -
g . 10.9  160.7 0.3 11.83 7.68 .210 '
v 9.1 150.6 0.0 9.75 7.20 .142 :
' 7.6 141.2 -0.1 7.99 6.75 .096 ’
5.9 130.8 -0.5 6.13 6.25 .056
LY
o 4.6  119.7 0.8 4.70 5.72 .033
l
. 3.3 107.7 -0.7 3.29 5.15 .016
2.6 99.2 -2.1 2.54 4.74 .010
J .
’ 1.9 90.0 -4.0 1.87 4.30 .005 ‘
,'. Q
s 1.0 59.4 -11.0 0.97 2.84 .0014 ‘
o
'.‘ .I
\Sal '
1
:
: ‘
i
\ )
# 3
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Table II Example Trajectory #2
N Mach y (kft) 4 (deg) V (kft/s) h (107%) u
)
)
28.3 287 .4 -0.4 25.01 13.73 .942
N 28.3 262.3 -0.7 25.01 12.53 .941
[
- 25.4 227 .9 -0.9 24.92 10.89 .933
23.1 189.6 -0.8 24 .47 9.06 .808

N 21.5 171.0 -0.5 23.24 8.17 .810
N 20.3 175.1 +0.5 21.93 8.37 721
29

e 19.2 164.1 -0.7 20.73 7.84 .644
- 17 .4 138.9 -0.5 18.29 6.64 .501
N 14.2 129.4 -0.5 14.78 6.18 .327
\
- 10.6 107.0 -1.2 10.53 5.11 .166
e 5.6 81.5 -3.3 5.48 3.90 .045
e 2.0 49.5 -3.8 1.97 2.40 .0085
' 1.2 25.7 -18.0 1.24 1.23 .0021
N
K L)
4 o
a4
'
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JI1 Example Trajectory #3

. e o

Mach y (kft) ~ (deg) V (kft/s) h (10°%) u
28 300. -10. 25 .00 14.34 .914
27. 256.5 -10.0 25.05 12.26 .816
24 . 212.8 -10.0 25.08 10.17 .916
23. 169.3 -9.9 25.04 8.09 .912
22. 92.7 -7.0 22 .48 4.43 .743
19. 72.3 -4.2 18.59 3.46 .513
11. 66.6 +3.4 10.76 3.18 .172
7.7 89.2 +9.7 7.55 4.26 .083
6.3 125. +3.8 6.45 5.97 .062
6.0 105. -9.8 5.97 5.02 .052
5. 71. -12.4 4,97 3.40 .035
2.2 47 . +0.5 2.12 2.28 .007
1. 50. -2.7 1.55 2.19 .0036
186
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Supplemental Figures for Section VI

THE

v

Supplemental figures for Section IV are presented on ]

I""-

the following pages.
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The assumption of a non-rotating planet, common in most analytical entry
trajectory analyses, has been shown to produce significant errors in some solutions
for the lifting atmospheric entry ofpEarth. This thesis presents an investigation

.”}ofvthe validity of the non-rotating planet assumption for general three-dimensional

SIELAY S ORGSO

Earth atmospheric entry. 7 »-~°.

. In this effort, the three-dimensional equations of motion for lifting atmospheric
-are expanded to include a rotating planet model. A strictly exponential atmosphere,
rotating at the same rate as the planet, is assumed with density as a function of
radial distance from the planet's surface. Solutions are developed for the non-
rotating Earth equations of motion and for one of the rotating Earth equations of
motion using the method of matched asymptotic expansions.

It is shown that the non-rotating Earth assumption produces incorrect entry
trajectory results for entry orbital inclination angles between 0.5 and 75.0
degrees and vehicle speeds ranging from circular orbital velocities to low
supersonic speeds. However, a variety of realistic trajectory states exist where
some of the non-rotating Earth equations of motion are valid. Three of the non-
rotating equations of motion are found to be valid for the same entry trajectory
states. Other, independent trajectory states exist where a fourth non-rotating
Earth equation of motion is valid. A fifth equation of motion is never valid for
the ranges of orbital inclination angle and speceds investigated.y Trends in the
results of the trajectory states of validity are discussed and méthods to estimate
some of these states are presented.
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